
www.manaraa.com

Automated Identification of Computer
Science Research Papers

By

Tong Zhou

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2016

c©2016 Tong Zhou

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ProQuest 10125910

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

ProQuest Number: 10125910

www.manaraa.com

Automated Identification of Computer Science Research Papers

by

Tong Zhou

APPROVED BY:

D. Yang

Department of Mathematics and Statistics

A. Ngom

School of Computer Science

J. Lu, Advisor

School of Computer Science

May 19, 2016

www.manaraa.com

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyones copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

III

www.manaraa.com

ABSTRACT

The fast growing speed of the size of scholarly data have made it necessary to

find out efficient machine learning ways to automatically categorize the data. This

thesis aims to build a classifier that can automatically categorize Computer Science

(CS) papers based on text content. To find out the best method for CS papers, we

collect and prepare two large labeled data sets: CiteSeerX and arXiv, and experiment

with different classification approaches including Naive Bayes and Logistic Regression,

different feature selection schemes, different language models, and different feature

weighting schemes. We found that with large size of training set, Bi-gram modeling

with normalized feature weight performs the best for all the two data sets. It is

surprising that arXiv data set can be classified up to 0.95 F1 value, while CiteSeerX

reaches lower F1 (0.764). That is probably caused by labeling of CiteSeerX is not as

accurate as arXiv data set.

IV

www.manaraa.com

AKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor Dr. Jianguo Lu

for his constant guidance and encouragement during my whole Master’s period in the

University of Windsor. Without his valuable help, this thesis would not have been

possible.

I would also like to express my appreciation to my thesis committee members Dr.

Alioune Ngom, Dr. Dilian Yang and Dr. Yung Tsin. Thank you all for your valuable

guidance and suggestions to this thesis.

Meanwhile, I would like to thank Yi Zhang for all the helps during my research

process, including sentence2vec modeling on arXiv data set, duplicate detection on

CiteSeerX data set; and to thank Dr. Yan Wang for the CiteSeerX title correction

researches.

Last but not least, I want to express my gratitude to my parents and my friends

who give me consistent help over the past two years.

V

www.manaraa.com

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

AKNOWLEDGEMENTS V

LIST OF TABLES IX

LIST OF FIGURES XI

1 Introduction 1

2 Review of The Literature 4
2.1 Academic Paper Classification Approaches 4

2.1.1 Classify Biomedical Articles 4
2.1.2 Categorize Papers based on ACM CCS Categories 5
2.1.3 Classify using Logistic Regression 7
2.1.4 Lower Feature Dimensionalities 8
2.1.5 Feature Representation for Academic Papers 10

2.2 Researches on Text Classification and Feature Selection Algorithms . 11
2.2.1 Comparison of Classification Algorithms 12
2.2.2 Improvement on Naive Bayes 13
2.2.3 Comparison of Feature Selection Algorithms 15

2.3 Summary . 16

3 Data Set 18
3.1 CiteSeerX . 18

3.1.1 Labeling using DBLP . 19
3.1.2 Separate Classes: Merging of CiteSeerX and DBLP 20
3.1.3 Merging Algorithm . 22
3.1.4 Evaluation of the Merging Algorithm 25
3.1.5 Results and Conclusion . 26

3.2 arXiv . 26

4 Researches on Citation Graphs 28
4.1 Graph A: DBLP Citation Graph . 28
4.2 Graph C: CiteSeerX Citation Graph 29

4.2.1 CiteSeerX Title Correction . 30
4.2.2 Merging Duplicates . 31

4.3 Graph B: Graph for Merged Data Set 33
4.4 Comparison Between Three Graphs 33

4.4.1 Adding DBLP citations (Graph A vs. Graph B) 33
4.4.2 Published, on web papers (Graph A vs. Graph C) 35

VI

www.manaraa.com

4.4.3 Duplicates and Citations . 36

5 Classification System Methodology 39
5.1 Difficulties of Classifying Academic Papers 39

5.1.1 Lower Feature Dimensionality 40
5.1.2 More Efficient Classifier . 40
5.1.3 Deal with length variations . 41

5.2 The proposed solution . 41
5.3 Language Modeling . 42

5.3.1 N-gram . 42
5.3.2 Sentence2vec . 44

5.4 Feature Weights . 45
5.4.1 Term Frequency . 45
5.4.2 Length Normalization . 45
5.4.3 Full Normalization . 46

5.5 Feature Selection Issues . 46
5.5.1 Mutual Information . 47
5.5.2 χ2-statistic . 50
5.5.3 Pointwise Mutual Information 51

5.6 Classification Algorithms . 51
5.6.1 Naive Bayes Classifier . 51
5.6.2 Multinomial Naive Bayes . 52
5.6.3 Bernoulli Naive Bayes . 56
5.6.4 Logistic Regression . 59

6 Evaluations 60
6.1 N Fold Cross Validation and F1 Measure 60
6.2 Preliminary Study: Classifying conference papers 61

6.2.1 Classifying VLDB and SIGMOD papers 62
6.2.2 Classifying VLDB and ICSE papers 65

6.3 Classifying arXiv Papers . 67
6.3.1 Experimental Settings . 67
6.3.2 Impact of stop words and stemming 69
6.3.3 Impact of Training Set Size 71
6.3.4 Impact of feature size . 73
6.3.5 Observation to the Naive Bayes Classification Result 80

6.4 Classifying CiteSeerX papers . 81
6.4.1 Experimental Settings . 81
6.4.2 Impact of Training Set Size 83
6.4.3 Time Complexity . 88
6.4.4 Impact of feature size . 89
6.4.5 Observation to the Naive Bayes Classification Result 97

7 Discussions and Conclusions 99

VII

www.manaraa.com

References 102

VITA AUCTORIS 106

VIII

www.manaraa.com

LIST OF TABLES

1 Classification Results made by [19] 8

2 Comparison between CiteSeerX and DBLP 19

3 Full Text Index for CiteSeerX . 22

4 Confusion Matrix for the Merging Algorithm 25

5 False Positive and False Negative cases 26

6 #Papers of CS, Math, Physics in arXiv Data Set 27

7 Statistics of citation networks A, B, and C. All the isolated nodes are

excluded. 29

8 Difference after duplicate removal for graph C. 31

9 Comparisons Between Graph A,B 35

10 Comparisons Between Graph A, C 36

11 Example of Calculating Observed Frequency 49

12 Example of using Naive Bayes . 56

13 Top 20 VLDB and SIGMOD Bi-gram Features Selected in Bernoulli

Naive Bayes (without stemming) . 63

14 Top 20 VLDB and SIGMOD Bi-gram Features Selected in Multinomial

Naive Bayes (without stemming) . 64

15 Top 20 VLDB and ICSE Bi-gram Features Selected in Multinomial

Naive Bayes (without stemming) . 66

16 Classification Results Comparison by using sentence2vec 100D features

on 160,000 balanced arXiv data set 69

17 Multinomial Naive Bayes F1 measure comparison on 160,000 balanced

arXiv data set . 70

18 Statistics of Classification Results with the increase of training set size 73

19 Spearman Correlation between top 1000 MI, PMI and χ2 selected features 73

IX

www.manaraa.com

20 Top 70 Uni-gram and Bi-gram arXiv Features Selected by χ2 (features

with higher CTF in CS are highlighted with red color) 74

21 Top 70 Uni-gram and Bi-gram arXiv Features Selected by PMI (fea-

tures with higher CTF in CS are highlighted with red color) 76

22 Classification Results Comparison of Uni-gram and Bi-gram with size

of 1,200,000 papers (the size of Bi-gram with unlimited features is

200,000) . 87

23 Top 70 Uni-gram and Bi-gram CiteSeerX Features Selected by χ2 (fea-

tures with higher CTF in CS are highlighted with red color) 91

24 Top 70 Uni-gram and Bi-gram CiteSeerX Features Selected by PMI

(features with higher CTF in CS are highlighted with red color) . . . 92

25 Example of top mis-classified non-CS papers 98

X

www.manaraa.com

LIST OF FIGURES

1 Creating big scholarly training data set 20

2 Full Text and Extracted Metadata 21

3 Example of citation metadata in CiteSeerX 30

4 (a) Citation Distributions among nodes in AB and AB; (b) Citation

Distributions among nodes in BA and BA 34

5 (a) Node intersection of A and B; (b) Edge intersection of A and B . 34

6 (a) In-Degree distribution of published & on web papers and only pub-

lished papers using ArnetMiner Citation Graph; (b) In-Degree distri-

bution of published & on web papers and only on web papers using

CiteSeerX Citation Graph . 36

7 Citation count against duplicate occurrence. (a, b) average citation

count against duplicate occurrence; (c, d) loglog plot of (a, b); (e, f)

box plot; (a, c, e) CiteSeerX Graph; (b, d, f) AMiner Graph 37

8 Classification System . 42

9 Example of Language Modeling . 43

10 Definition of Observed Frequency . 48

11 Length Distribution of VLDB, SIGMOD and ICSE Papers 62

12 VLDB and SIGMOD Classification Results in Bernoulli (a) and Multi-

nomial (b) Naive Bayes . 62

13 Comparison of high score features and low score features 65

14 The effect of stop words and stemming to classification results 65

15 VLDB and ICSE Classification Results in Multinomial Naive Bayes . 66

16 Paper length distribution of arXiv data set 68

17 Impact of training data size on F1. (A) Both Uni-gram and Bi-gram

model out-perform sentence2vec when training data is large; (B) Nor-

malization plays a minor role in this data. 71

XI

www.manaraa.com

18 Error bar plot of (A) sentence2vec Multinomial Naive Bayes; (B) sen-

tence2vec Logistic Regression; (C) Uni-gram full normalized; (D)Bi-

gram full normalized . 72

19 Top features selected by different methods. Panel (A) and (C): χ2; (B)

and (D): PMI. (A) and (B) are Uni-gram models; (C) and (D) are

Bi-gram models. 77

20 The name of the top 30 features selected by different methods. Panel

(A) and (C): χ2; (B) and (D): PMI. (A) and (B) are Uni-gram models;

(C) and (D) are Bi-gram models. 78

21 Impact of feature size for Uni-gram and Bi-gram models, with com-

bination of text normalization. (A) Uni-gram; (B) Uni-gram length

normalized; (C) Uni-gram fully normalized; (D) Bi-gram; (E) Bi-gram

length normalized; (F) Bi-gram fully normalized. 79

22 Naive Bayes Classification Probability Distributions: Uni-gram (a) and

Bi-gram (b) . 80

23 Paper length distribution of CiteSeerX data set: (A) total distribution

in loglog plot; (B) distribution in lower range; (C) distribution in higher

range . 82

24 Classification Results when increasing training set size. X-axis: train-

ing set size, Y-axis: F1 value. (A) 3 feature weighting schemes under

Uni-gram and Bi-gram (Unlimited features); (B) 3 feature weighting

schemes under Bi-gram (limit 500K features); (C) 3 feature weighting

schemes under Bi-gram (limit 50K features); (D) Overall comparison

of Uni-gram and Bi-gram . 85

25 Comparison of precison, recall and F1 before and after normalization;

(A) Uni-gram unlimited features; (B) Bi-gram 500K features (Selected

by χ2) . 87

26 Comparison of time consuming of running Multinomial Naive Bayes . 88

XII

www.manaraa.com

27 Top features selected by different methods. Panel (A) and (C): χ2; (B)

and (D): PMI. (A) and (B) are Uni-gram models; (C) and (D) are

Bi-gram models. 89

28 Impact of feature size for Uni-gram model, with combination of text

normalization. (A) Uni-gram un-normalized; (B) Uni-gram length nor-

malized; (C) Uni-gram fully normalized 94

29 Impact of feature size for Bi-gram model, with combination of text

normalization. (A) Bi-gram un-normalized; (B) Bi-gram length nor-

malized; (C) Bi-gram fully normalized 95

30 Naive Bayes Classification Probability Distributions: Uni-gram (a) and

closer look on smaller values(b) and bigger values (c) 97

XIII

www.manaraa.com

CHAPTER 1

Introduction

Scholarly data is very important for researchers to search for related papers to build

the basis for their own research ideas. However, the size of the scholarly data has

increased dramatically which cause problems for researchers to efficiently search for

relevant and high quality papers. Reported by [23], the most popular scholarly search

engine Google Scholar has gathered and indexed more than 160 million scholarly

documents into their database. A newly developed database: Microsoft Academic

Search (MAS) [29] also contains more than 80 million publications. A major advan-

tages of MAS is that it provides the hierarchical research fields that papers belong

to (e.g. Computer Science, Math, Physics, Economics), which can be treated as a

classification system. The academic paper classification is very important and useful.

For example, when building an academic search engine specializing in a certain area

or recommending relevant papers, we need to classify whether a document crawled

from the Web belongs to this area. There are numerous techniques to address these

problems, but the basic building block is the text classification techniques based on

supervised machine learning method.

There are three main aspects regarding techniques of text classification: text pre-

processing, feature extraction/selection, classifier. There are lots of mature algorithms

and systems related to these techniques. Take algorithms to train classifiers for exam-

ple: Naive Bayes [21], k-NN [35], SVM [13], Logistic Regression [12]. Each document

in training data set is processed into a feature set, along with their pre-assigned class

labels (categories), inputted into the classifier. The classifier is trained by using the

feature sets of all training documents. Then, for newly received test documents, the

1

www.manaraa.com

1. INTRODUCTION

trained classifier extracts feature sets from test documents, and process the feature

sets based on the learned knowledge from training set to automatically predict the

class labels for test documents. Although text classification is widely studied, there

are only few studies focusing on academic papers [7] [14] [19] [3] [5]. We are not clear

how accurate we can classify academic papers, and what are the best methods. In this

thesis, we specifically focus on the classification of Computer Science (CS) papers.

Our research questions are: 1) Can we tell the difference between a CS paper and

a non-CS paper? 2) What is the best method for academic paper classification? 3)

What are the best parameters for each method? Each classification method has many

parameters. Take Naive Bayes [21] method for example, there are different models [6]

(e.g.,Uni-gram, Bi-gram), different feature selection methods [28] [37] (e.g., mutual

information (MI), χ2, pair-wise mutual information (PMI)), different pre-processing

[1] (e.g., stop words, stemming), systemic bias correction [27] (e.g., length normaliza-

tion and weight adjustment). Due to the unique characteristics of academic papers,

the choosing of correct parameters need to be investigated. 4) Whether the neural

network approach helps in this area? Given the recent success of deep learning in

many domains, we need to check whether approaches spawn from word2vec [22] and

sentence2vec [16] can improve the performance.

In this thesis, we conducted a series of experiments on various scholarly data

sets, including arXiv [32] and CiteSeerX [10] to find answers of the above questions.

Compared with most of the previous works, our main improvement is the huge size of

the data set used and various methods and parameters tested. In arXiv data set, each

document is labeled with an specific research area such as CS, Math, Physics, and

the label is considered accurate because it is self-identified by its authors. The most

recent arXiv collection contains 84,172 CS papers and 575,043 non-CS papers. We

removed duplicates to avoid the noise introduced by repeated papers. Also, we used

sampling to make the sizes of positive and negative classes balanced to eliminate the

imbalanced data problem [27]. After duplicate removing and balancing, our arXiv

data set collection contains 80K CS papers and 80K non-CS papers, the text of

each paper contains title and abstract. On the other hand, CiteSeerX provides a

2

www.manaraa.com

1. INTRODUCTION

much bigger data set. Based on their downloadable data source there are 2.1 million

documents provided and the whole paper text that parsed from the original PDF file

is provided. However, documents are not labeled and there are even documents not

belong to academic papers (e.g. manual, report, slides) because all the documents

are crawled from the web. In order to solve the labeling problem, we use DBLP

[17] data set which is a manually maintained Computer Science bibliography to find

intersections with CiteSeerX papers and label the intersection part as CS papers while

the remaining CiteSeerX papers as non-CS papers. As a result, we got 665,483 CS

papers and 1,452,639 non-CS papers. We also use sampling to make the data set

balanced and our experimental CiteSeerX data set contains 600k CS papers and 600k

non-CS papers.

The methods we tested include Multinomial Naive Bayes (MNB) on Uni-gram and

Bi-gram models, and MNB and logistic regression on vector representations generated

using sentence2vec. We chose these methods due to the scalability issue. We tried

other methods, such as the well-known SVM, without success. The experiments are

carried on two powerful servers with 256 GB memory and 24 core CPU. Our results

show that CS papers can be classified with high accuracy in arXiv data set, while

relatively lower accuracy in CiteSeerX data set. As for arXiv data set, most methods

can achieve an F1 value above 0.9. The best method is the Bi-gram model using MNB.

The out-of-box sentence2vec is inferior to the Bi-gram model by almost 2 percent.

Interestingly, removing stop words helps in all the methods, even in sentence2vec,

while stemming has limited impact. Historically, PMI is considered inferior in text

classification [34]. We show that when the training data is large, it out-performs MI

and χ2. And for CiteSeerX data set, the highest F1 value is around 0.764, also achieved

by Bi-gram models, with PMI selected features. Due to labeling and text cleanness

problems, CiteSeerX classification results are not as good as arXiv. Moreover, through

several feature weight normalization approaches, the classification F1 value can be

improved, especially the gap between precision and recall can be lowered which infer

a better classification result even F1 measure values are similar.

3

www.manaraa.com

CHAPTER 2

Review of The Literature

This chapter reviews the previous researches and publications on academic paper

classification approaches and some related text classification techniques.

2.1 Academic Paper Classification Approaches

2.1.1 Classify Biomedical Articles

[7] automatically classify whether a biomedical article has direct relations to the areas

of 6 proteins / polypeptides topics. Their classification system is a typical two class

scenario (positive class and negative class).

Data Set and Labeling

They gathered a corpus of abstracts from the MEDLINE database that contains large

amount of biological article information. They query the names of the six proteins

/ polypeptides topics and download the top 500 returned articles for each protein

and finally obtained a data set with 2,889 abstracts. One of the authors manually

labeled each of the 2,889 abstracts. The criterion to label an abstract into positive

class is that the abstract must clearly and evidently indicate that protein x is found

in location y of this abstract.

4

www.manaraa.com

2. REVIEW OF THE LITERATURE

Methodology

Before applying the classification algorithms to their data set, they pre-process the

abstract text by using stemming technique. They applied their baseline method:

sentence co-occurrence predictor and Naive Bayes as classification algorithms to apply

to the stemmed data set. Their baseline algorithm is a simple method that treat a

document as positive only if a protein and sub-cellular location occur in the same

sentence inside the document. As for Naive Bayes, they used class term frequency

and add-one smoothing to estimate the conditional probability P (t|c) for a word t

being in a class c, which can be also called as Multinomial Naive Bayes. They used

cross validation evaluation method to test the class label (positive or negative) for

each document (abstract) by using other documents as training set. The measurement

they used are precision and recall, precision is the ratio of correct positive predictions

out of all positive predictions, and recall is the ratio of correct positive predictions

out of all real positive documents.

Results

They plotted the precision and recall curves for the baseline algorithm: sentence

co-occurrence and Naive Bayes. At the same recall level, Naive Bayes can reach

higher precision. They concluded that when recall = 25%, the precision for baseline

algorithm is 44% and the precision for Naive Bayes algorithm is 70%.

2.1.2 Categorize Papers based on ACM CCS Categories

[14] proposes an approach to categorize CiteSeer papers into 268 different categories

based on the ACM CCS class definition.

Data Set and Labeling

Their data set was obtained from CiteSeer (later known as CiteSeerX). They men-

tioned that they gathered 1,164,939 academic papers and found out 31,121 of them

contain author-assigned ACM tags. The ACM tags belong to the ACM’s Computing

5

www.manaraa.com

2. REVIEW OF THE LITERATURE

Classification System (CCS), which is a three level classification tree that defines the

hierarchical set of computer science research categories. There are 369 different ACM

CCS tags found among all the 31,121 papers. However, 101 ACM CCS tags own less

than 10 papers, which they considered too small. They used the remaining papers

within the remaining 268 ACM CCS tags as their labeled training set, each paper is

labeled with one unique ACM CCS tag.

Methodology

The authors didn’t mention the details of their text pre-processing steps. Assume

they used the original un-normalized text as input and separate each distinct word

as features. As for their training set used for the classifier, they sampled 10 papers

in each of the 268 ACM CCS categories and construct a training set with 2,680

papers. They only used one classification algorithm: k-NN, which is an approximity

based algorithm that predict the class label of a test document by comparing the

classes distribution of its nearest k neighbors, and choose the most common (or top

k common) class among the neighbors to assign to the test document. They choose

the top 3 (or 6, 9, 12) common classes assigned to each test document.

They didn’t use the cross validation scheme to evaluate the classifier, instead, they

used the 2,680 labeled papers to test all the remaining (around 1 million) un-tagged

papers in their CiteSeer data set collections. They built a user based system, to let

users judge the precision of the ACM CCS tags assigned to the test papers.

Results

Their system users were asked to judge the relevance of the returned ACM CCS tags

by three precision levels: very relevant (level 2), relevant (level 1), or irrelevant (level

0). Their average precision value is 1.4.

6

www.manaraa.com

2. REVIEW OF THE LITERATURE

2.1.3 Classify using Logistic Regression

[19] conducted text classification on multiple data sets by using logistic regression

algorithm.

Data Set and Labeling

They experimented with three kinds of data sets. The first data set is Cora, which

contains 4,187 papers in the research area of machine learning, each of the paper

has pre-defined class label that categorize the paper into one of the seven possible

sub-topics within machine learning. The second data set they used is CiteSeer. They

gathered around 3,600 papers with pre-defined six categorizes: Agents, Artificial Intel-

ligence, Database, Human Computer Interaction, Machine Learning and Information

Retrieval, each CiteSeer paper is assigned with one of the six categorizes. The last

data set they used is WebKB, which contains web pages from four computer science

departments. The class labels are also pre-defined, which are the topics of the web

page. The categorizes include faculty, student, project and course. They gathered

700 web pages, each page can be treated as a text document with one of the four

categorizes.

Methodology

They used stemming and stop words removal to pre-process the document text of

both the three data sets. They also removed rare words in the text, but they didn’t

provide the specific definition of rare word. For Cora data set, after pre-processing,

the whole data set contains 1400 different words (size of dictionary). For CiteSeer

data set, the size of the dictionary is 3000; and the dictionary size of WebKB data

set is 2338.

The authors used Logistic Regression as their classification algorithm to calculate

the conditional probability distribution of documentX under class c by P (c|OA(X), LD(X)).

OA(X) is the content attributes of document X, which include text information such

as title, abstract and full text, and LD(X) is the link features (citation links). Note

7

www.manaraa.com

2. REVIEW OF THE LITERATURE

Avg. Accuracy Avg. Precision Avg. Recall Avg. F1 Measure

Cora 0.674 0.662 0.626 0.643

CiteSeer 0.607 0.551 0.552 0.551

WebKB 0.862 0.876 0.795 0.832

TABLE 1: Classification Results made by [19]

that this paper used the citation links to improve the classification results, compared

with pure text classification using Logistic Regression. Since we only focus on full

text classification, we only discuss about their full text classification methodology

and results. In the multi-class classification scenario, they trained one-against-others

model for each class to transfer it into two-class classification problem. For the testing

process, select the class that has the highest posterior probability.

Results

For the three data sets, the authors separated them into three sub sets equally to

conduct 3-fold cross validation to test the accuracy of their classification system.

Table 1 shows their classification results when only using content OA(X) as the

attributes of documents. We can see the accuracy and F1 measure for WebKB are

much higher than Cora and CiteSeer.

2.1.4 Lower Feature Dimensionalities

[3] discussed about lowering feature dimensionality to simplify the complexity of clas-

sifiers.

Data Set and Labeling

The authors used the similar data sets with the previous related work. Two data

sets are used, one is Cora, the other is CiteSeer. Different from [19], they didn’t

explore the citation links between papers. Their gathered Cora data set contains

3,191 machine learning papers, each of them has been labeled into one of the seven

classes. CiteSeer contains 3,186 labeled papers, in total there are six classes.

8

www.manaraa.com

2. REVIEW OF THE LITERATURE

Methodology

Compared with [19], this paper dig out more about the effect of feature dimensionality

to the classification results. They mainly used three different kinds of methodologies

to lower the feature dimensionality:

• Mutual Information algorithm: measure the dependency between a feature and

a specific class. If a feature is highly related to only one specific class, the

feature should has higher scores.

• Topic Models: transfer the text of the paper (wl, cl) into a set of topics (θl1, ..., θ
l
m, cl),

θli is the probability of topic i in paper wl, cl is the class label of paper wl.

• Feature Abstraction: find clusters of similar features to reduce the feature di-

mensionality. Input the whole data set D = (Wl, cl)=1,...,N , output an abstrac-

tion hierarchy τ over the whole vocabulary space V . Abstraction hierarchy is

a rooted tree that internal nodes correspond to abstracted features (clusters of

words).

They used two classification algorithms: SVM and Logistic Regression.

Results

They used 5-fold cross validation for all the evaluation experiments. They showed

several plots to present the comparison of classification results. Different plots show

the feature selection results comparison on different data set (Cora / CiteSeer) and

different classification algorithms (SVM / Logistic Regression). From their experi-

ment results, Logistic Regression and SVM only have slight performance differences,

and Cora data set can produce higher classification accuracy than CiteSeer data set.

However, the performance of different feature selection algorithms varies greatly.

The performance of feature selection algorithms are showed by classification accuracy

curves. The authors used two topic models, one is topic distribution, the other

is topic words. Topic distribution performs much worse than Mutual Information

and abstract features, and topic words performs similar (slightly worse) than feature

9

www.manaraa.com

2. REVIEW OF THE LITERATURE

abstract. In all of their plots, Mutual Information accuracy curves are similar with

abstract features accuracy curves, and both of them can reach a better classification

accuracy compared with using all features to do classification.

2.1.5 Feature Representation for Academic Papers

[5] proposed a new way of feature representation to improve the classification system

especially for academic papers. Their classification goal is to identify whether a

crawled document is an academic paper.

Data Set and Labeling

They used two data sets. They crawl 833 documents from the web by themselves to

construct their first data set, and the second data set is obtained from CiteSeerX,

including 1,409 documents. They manually labeled each document into positive or

negative class. Positive corresponds to research articles that including academic pa-

pers published in conferences, journals, or book chapters, technical reports. Nega-

tive corresponds to other non research article documents, including long documents,

books, slides, brochures, even news, agenda, etc.. Based on their manual labeling, for

the first crawled data set, they labeled 352 docs into positive and 481 as negative.

For the second CiteSeerX data set, they labeled 811 docs into positive, while 598 as

negative.

Methodology

They proposed the novel way for feature representation that they called: structural

features. Based on the trait of academic papers, the authors summarize 27 different

structural features to represent a document:

• 2 File Specific Features: FileSize, PageCount

• 11 Text Specific Features: DocLength, NumWords, NumLines, NumWordsPg,

NumLinesPg, RefRatio, SpcRatio, LnRatio, UcaseStart, SymbolStart

10

www.manaraa.com

2. REVIEW OF THE LITERATURE

• 6 Section Specific Features: Abstract, Introduction, Conclusion, Acknowledge,

References, Chapter

• 8 Containment Features: ThisPaper, ThisBook, ThisReport, ThisThesis, This-

Manual, ThisStudy, ThisSection, TechRep

Note that Section Specific Features and Containment Features are valued with

binary True or False. For Section Specific Features, if a document has the corre-

sponding sections, e.g. abstract, they the feature is valued as True. For containment

features, if the corresponding word occurs in the document, then it is labeled as True.

Based on their method, the feature dimensionality of each document is lowered into

27 dimensions, which is much smaller than traditional bag of words.

Results

They also compared their method with bag of words feature representation. For the

first data set (crawled), there are 7,443 distinct words in total, and 15,248 distinct

words in the second data set (CiteSeerX). They experimented with 5 algorithms:

SVM, Logistic Regression, Naive Bayes, Decision Tree, Random Forest.

For the results of the crawled data set, using their structural features, SVM

achieved the highest F1 measure value, which is 0.854, and except Naive Bayes, all

the other algorithms produced similar classification results. By using bag of words,

Naive Bayes reaches the best F1: 0.749. For the CiteSeerX data set, using structural

features, still, except Naive Bayes (0.801), all the other four algorithms performs sim-

ilar, while Random Forest is the best (0.863). However, if using bag of words model,

Naive Bayes (0.772) outperforms SVM (0.680) greatly.

2.2 Researches on Text Classification and Feature

Selection Algorithms

In this section, we focus on more comprehensive comparison of different text classifi-

cation and feature selection algorithms. Most of the previous researchers conducted

11

www.manaraa.com

2. REVIEW OF THE LITERATURE

more thorough text classification experiments on more popular data sets such as

Reuters-21578, instead of academic paper data sets. This section aims to summarize

their conclusions on most commonly used algorithms.

2.2.1 Comparison of Classification Algorithms

[36] thoroughly compares the performances of 5 different text classification algorithms:

SVM, k-NN, LLSF (Linear Least Squares Fit), NNet (Neural Network) and NB (Naive

Bayes).

They also simply used two popular feature selection algorithms: χ2-statistic and

information gain to produce the feature ranks. However, the major goal of this paper

is still the performance comparison of different classification algorithms, the feature

selection algorithm is only an auxiliary tools for test the classification algorithms

based on different feature sizes. Their experimental settings are shown as follows:

• SVM: use both linear and non-linear kernels provided by SVMlight.

• k-NN: set k to 45 which is based on their previous conclusion of parameter

optimization.

• LLSF: set singular value to 500 based on their previous conclusion of parameter

optimization.

• NNet: set the number of hidden units in the middle layer to 64.

• NB: default parameters.

The data sets they used are Reuters-21578 and Reuters-21450. They used cross

validation scheme to evaluate the classification algorithms, the measurement used

include micro average precision, micro average recall, micro average F1 and macro

average F1. Based on the results of experiments on full feature set, for micro average

F1, they concluded the performance ranking for the 5 algorithms as follows:

SVM > kNN � {LLSF,NNet} � NB

12

www.manaraa.com

2. REVIEW OF THE LITERATURE

And for the macro average F1, they concluded the performance ranking for the 5

algorithms as follows:

{SVM, kNN,LLSF} � {NB,NNet}

Actually for all the 5 algorithms, with the increase of the feature size, the trend of

F1 measure is also increasing. When the feature size is large enough, the F1 measure

of all the 5 algorithms can increase higher than 0.8. But still, the performance curves

of SVM, k-NN and LLSF are better than NB and NNet.

2.2.2 Improvement on Naive Bayes

Although [36] concluded that more sophisticated algorithms such as SVM can out-

perform Naive Bayes, However, the time and space complexity of executing SVM

are much higher than Naive Bayes. Especially, in the case of text classification, the

number of features can be much larger compared with other kinds of classification

scenario. Therefore, Naive Bayes is still very popular in the field of text classification.

Actually several previous researchers have proved that even though the independent

assumption of Naive Bayes can be unrealistic in most of the text classification sce-

narios, Naive Bayes can still performs surprisingly well [21].

The authors in [21] illustrated two model for Naive Bayes: Bernoulli Model and

Multinomial Model. Bernoulli Model uses the presence or absence of words in a text

document as features to represent a document. The words’ frequencies in document

are not taken into consideration. Multinomial Model in contrary, capture the frequen-

cies of features in each document, and use the features’ total class frequencies (total

occurrences in all documents of the class) to estimate the probabilities. They used

four data sets (Yahoo, Newsgroups, Industry Sector, WebKB) to do experiments and

their results showed that Multinomial Model performs better than Bernoulli Model

in text classification scenarios.

Another paper [27] described how to improve Naive Bayes algorithm to make it

more accord with Multinomial Model. They used three steps processing to normalize

feature weight instead of using term frequency (TF) directly:

13

www.manaraa.com

2. REVIEW OF THE LITERATURE

1. Use Log Term Frequency: [27] claimed that power law distribution can bet-

ter model text. Their experiments showed that usually term frequency proba-

bility distribution curve has a heavier tail than power law distribution curve.

When the term frequency value increase, the gap between the term frequency

of real text and power law keep expanding, which means the term frequency

probability of power law drops quicker than real text. [27] also showed that log

term frequency can make term frequency probability distribution proportional

to power law distribution, which can model the text and feature weight better.

Using log calculation, the term frequency can be transformed into:

dij = log(dij + 1) (1)

2. inverse Document Frequency (iDF): discount the weight of features by

their document frequency. Document frequency of feature dij means how many

documents have dij. The iDF calculation can be expressed as follows:

dij = dij log

∑
k 1∑
k δik

(2)

3. Length Normalization: discount the term frequencies of long documents to

diminish the dominant effect of long documents to the classification results.

dij =
dij√∑
k(dkj)2

(3)

For the smoothing of Naive Bayes parameter estimation, they also experiments

lots of smoothing factors. Instead of add-one smoothing which is a commonly used

factor, they concluded that factor with value 10−4 is better for Multinomial Model

of Naive Bayes algorithm. They used three different data sets: Industry Sector, 20

Newsgroups and Reuters to do the experiment, the classification results all show that

the normalized feature weight can produce much better classification accuracy.

14

www.manaraa.com

2. REVIEW OF THE LITERATURE

2.2.3 Comparison of Feature Selection Algorithms

There are two major branches of feature selection schemes, one is filter method,

the other is wrapper method. Due to the complexity of wrapper method and the

high dimensionality of feature space in text classification scenario, filter method is

commonly used. [28] compared and concluded the most efficient filter feature selection

algorithms for text classifiers. They experimented with two data sets: Reuters-21578

and small portion of Reuters Corpus Version 1 (RCV1). The filter feature selection

algorithms used include Document Frequency (DF), Information Gain (IG), χ2. They

concluded that χ2-statistic (CHI) consistently outperformed other feature selection

criteria for multiple classifiers and the two data set they used (Reuters-21578 and

small portion of Reuters Corpus Version 1). They also concluded that cut the low

DF features (delete them from feature set) can boost the performance for almost all

the classification algorithms (including Naive Bayes, k-NN, SVM.), which also showed

that χ2-statistic (CHI) is unreliable for rare words. In their Micro-F1 measure for the

different combinations of classifiers and feature selection algorithms, the results are

highly clustered by classifiers, and SVM outperforms other classifiers which Naive

Bayes is the worst. However, they also mentioned that a good feature selection

method enables KNN to surpass SVM’s performance.

[30] proposed another feature selection approach especially optimized for Naive

Bayes. They claimed that unlike the existing filter feature selection algorithms, their

approach can maximize the discriminative performance especially for Naive Bayes

text classification. Their approach is based on J -divergence, which is derivative

from KL-divergence. Their calculation equations are shown as follows:

KL(P1, P2) =

∫
x

p(x|H1) log
p(x|H1)

x|H2

dx =
M∑
i=1

pi1 log
pi1
pi2

J (P1, P2) = KL(P1, P2) +KL(P2, P1)

(4)

The transformation of the first equation is due to the discrete distribution of

features in text classification scenario. M is the vocabulary size, and p(x|Hi) is the

conditional probability of feature x being in class ci. They experimented with 20-

15

www.manaraa.com

2. REVIEW OF THE LITERATURE

Newsgroups data set, and the classification result curves showed that their proposed

feature selection algorithm performs better than DF and χ2. Especially when the

number of features is small, the performance gap between traditional method (such

as χ2) and their proposed J -divergence algorithm is bigger.

2.3 Summary

As a conclusion, the most common drawbacks of the previous work is the small size of

training data set. None of them used larger than 10,000 documents to train classifier.

Especially in the academic paper classification scenario, due to the huge amount of

academic research fields and the long document length, the amount of terminologies

used can be quite huge so that smaller data set cannot well represent enough features

used in academic papers. As for the academic paper classification results achieved

by previous researchers, most of them are not good enough. [7] claimed 0.7 precision

with Naive Bayes; [19] achieved 0.551 F1 and 0.6 accuracy with Logistic Regression

on CiteSeerX data set, and with almost the same data set, [3] achieved 0.7 accuracy

with SVM with reduced feature dimensionality. [5] reached 0.86 (CiteSeerX) with

Random Forest on structural features, 0.77 (CiteSeerX) with Naive Bayes on bag of

words model.

When the size of training data set largely increase, lots of problems need to be

considered. Firstly, the classifier efficiency problem need to be considered, more

complex algorithms such as SVM maybe infeasible on bigger training data size. [14]

uses k-NN to train a classifier with 268 classes, and each class only has 10 training

documents. The training data size is extremely small and the efficiency of k-NN is

also very low compared with other algorithms. Secondly, labeling problem can also be

a difficulty. [14] [19] [3] described that the labels are provided by the data set itself,

while [7] [5] manually labeled the whole training data set. However, when the data

set size is too large, it is impossible to manually inspect every document to assign

class labels. Thirdly, the related works on academic paper classification didn’t well

utilized the feature selection algorithms. For example, the best reported algorithm χ2

16

www.manaraa.com

2. REVIEW OF THE LITERATURE

haven’t been used. [5] proposed the structural features. Although they proved that

their classification results are better than using bag of words features, the workload

for finding out and valuing each structural features in every document is very huge,

which will become an impossible task if the training set size is large.

Apart from the above difficulties, advanced language modeling such as N-gram lan-

guage modeling haven’t been utilized into academic paper classification scenario, the

previous researchers merely use single words as features, didn’t consider the phrases.

Moreover, length variation issues of academic papers haven’t been considered yet,

which can also cause problems to the classification system. Advanced feature weight

representation haven’t been considered too, most of them only use the original value

of word occurrences in document (or called Term Frequency) to represent the feature

weight, which is not strong enough for a more complex text environment.

17

www.manaraa.com

CHAPTER 3

Data Set

The first step of text classification is to obtain the training data set contain enough

amount of both positive (CS) and negative (non-CS) class documents. Compared

with previous works, one of the major improvement of this thesis is to largely increase

the size of training data set to include enough instances that can represent multiple

research fields. In the sections below, we will introduce two big scholarly data set

that can be used as our big training data set.

3.1 CiteSeerX

CiteSeerX [10] [15] [18] [33] is a huge academic research paper digital library. For more

than ten years, it automatically crawled more than 2 million scientific literature. The

data set can be obtained from Amazon S3. For each academic paper, CiteSeerX data

set provides the paper full text and the paper metadata. Full text is parsed from the

original crawled PDF format documents. Metadata is further parsed from the full text

using SVM header parser. Metadata includes paper title, authors (name, affiliation),

published venue, published year, abstract, etc. CiteSeerX also uses ParsCit to extract

the citation strings from the reference part of documents. The original text of each

reference is extracted as raw citation string and metadata in raw citation string is

further parsed including cited paper title, authors, year, published venue etc..

18

www.manaraa.com

3. DATA SET

DBLP CiteSeerX
#Papers 2,797,143 2,118,122
Paper Areas Computer Science All Areas
Data Collection Manually Collected Crawled
Metadata Richness Title

Authors
Published Venue
Pages
Year

Title
Authors
Affiliations
Published Venue
Pages
Year
References

Metadata Correctness High (manually maintained) Low (Automatically parsed)
Full Text No Yes

TABLE 2: Comparison between CiteSeerX and DBLP

3.1.1 Labeling using DBLP

Based on our observation, part of the academic papers in CiteseerX data set don’t be-

long to the field of computer science, even don’t belong to academic papers. We have

found papers that belongs to the field of chemistry (e.g. Document 10.1.1.157.7467

with title ”Educating Chemical Engineers in Product”), Geology (e.g. Document

10.1.1.6.7639 with title ”Earthquake nucleation and its relationship to earthquake

clustering”), even more unrelated areas such as education (e.g. Document 10.1.1.123.9915

with title ”National Report on the Development of Education in Kenya”).

On the other hand, DBLP [17] is a computer science bibliography. It has col-

lected computer science research papers that published in all important journals and

conferences on computer science. DBLP splits research papers into several categories

based on their published sources, the major paper types are conference papers, jour-

nal papers, books, Ph.D. thesis. For most of the papers, the metadata contains titles,

authors, years, pages, URL of the paper, venue name (conference or journal), crossref

(the ID of the venue). However, the DBLP data set didn’t contain the abstract, full

text and references. Therefore, the DBLP data set itself can’t be used to do full text

related experiments.

Table 2 lists the major differences between CiteSeerX and DBLP data set. Consid-

ering CiteSeerX provided paper full text, also contained papers from both Computer

Science (CS) research areas and not Computer Science (non-CS) research areas, it can

19

www.manaraa.com

3. DATA SET

FIGURE 1: Creating big scholarly training data set

be used as a good source of our big scholarly training data set. The only problem is

how to separate the CiteSeerX data set into two parts of papers: CS and non-CS. Our

solution is to use DBLP data set to identify Computer Science papers in CiteSeerX

data set. Since all DBLP papers are belong to Computer Science categories, the

intersection set of CiteSeerX and DBLP can be treated as CS papers, the remaining

CiteSeerX papers can be treated as non-CS papers.

3.1.2 Separate Classes: Merging of CiteSeerX and DBLP

As shown in Fig. 1, CiteSeerX data set can be separated to two subsets using DBLP.

The merged subset can be labeled as CS papers, the remaining CiteSeerX subset can

be labeled as non-CS papers. These two subsets construct our first big scholarly data

set, which contains 2.1 million papers.

Problems and Difficulties

One obvious solution of merging CiteSeerX and DBLP is to utilize the metadata of

papers. Since both CiteSeerX and DBLP provide paper metadata (e.g. title), it

is easy to just select one kind (or multiple kinds) of metadata and perform string

comparison to the metadata in CiteSeerX and DBLP.

However, the problem is the low accuracy of automatically parsed CiteSeerX meta-

data. Based on our manual inspection and investigation, CiteSeerX data set contains

mal-formed and incorrect extracted metadata. Error occurs when automatically ex-

tract metadata [4]. Full text of the academic papers has uncertain and disordered

20

www.manaraa.com

3. DATA SET

(a) (b)

FIGURE 2: Full Text and Extracted Metadata

formats. Lots of paper titles didn’t appear in the start position of the full text as ex-

pected. Titles and author lists mixed together with the full text. The disordered full

text formats lead to the difficulty of parsing metadata. Even though they proposed

the metadata cleaning process [24], errors still exist. For example, some section sub-

titles were identified and parsed as paper title, such as ”related work” (e.g. Document

10.1.1.117.7236), ”experiment” (e.g. Document 10.1.1.224.908), ”acknowledgements”

(e.g. Document 10.1.1.101.7199). This may cause by wrongly identifying of the title

position in the full text. In some other cases, the venue information or author affilia-

tions were identified as title strings. As the example shown in Fig. 2, the first line of

the full text is the name of the published conference of this paper, and the real paper

title is located in the 4-th line. However, CiteSeerX parsed metadata treat the first

line as paper title. Moreover, [4] proposed an algorithm to purify CiteSeerX by using

DBLP, which can be equivalent to the merging of CiteSeerX and DBLP. Instead of

using pure string comparison, they use N-gram language modeling to normalize both

CiteSeerX and DBLP paper titles. Then they use Jaccard Similarity to compare

the two normalized paper titles. Meanwhile they also use author set ((ac ⊆ ad or

ad ⊆ ac)) and page comparison (pd ≈ pc) as an auxiliary comparison method. Their

result shows that when using 3-gram to normalize titles and only using paper title

to compare, the highest evaluation score (F1 measure: a harmonic mean between

precision and recall) can reach 0.77 when set Jaccard Similarity threshold to 0.7. We

consider that their merging result is not good, with nearly 30% wrongly identified

papers. Moreover, even though their 0.77 result is not convincing too, since lots of

the paper title metadata in CiteSeerX are inaccurate.

In order to avoid the inaccurate CiteSeerX metadata, we propose a novel approach

to find intersection between CiteSeerX and DBLP. Our algorithm is described in the

21

www.manaraa.com

3. DATA SET

indexed fields (for each paper).
First 400 words of full text.

Paper ID.
Title Metadata.

Authors Metadata.

TABLE 3: Full Text Index for CiteSeerX

following section.

3.1.3 Merging Algorithm

The idea of our approach is to utilize the paper full text in CiteSeerX data set, since

the real metadata can be found in paper full text. For example, as shown in Fig. 2

(a), all the essential metadata can be found in paper full text. Title is found in the 4th

line. Published venue information is found in the 1st line, and author list information

is found in the 2nd line. Having this basis, the core concept of our approach is to

search DBLP metadata in CiteSeerX paper full text. Note that the metadata in

DBLP is manually maintained, the accuracy and precision of the metadata can be

well ensured.

• Incrementally search DBLP metadata in CiteSeerX paper full text.

• Searching priority: title > authorList > venue

• Gradually reduce the matched CiteSeerX papers to minimum level to obtain

more precise match.

Indexing CiteSeerX Full Text

The total amount of whole CiteSeerX paper full text is extremely large (more than

100 GB). It is impossible to directly search DBLP metadata in 100 GB full text.

Thus, we use Lucene [11] to build index for the CiteSeerX full text to increase the

searching efficiency.

Different index fields can be created for each document, and all the fields are

related. Indexing can significantly increase the efficiency when searching for matched

strings. As we can see in Table 3, we created 4 fields in Lucene to index the contents

22

www.manaraa.com

3. DATA SET

separately. Among these fields, Paper ID is the unique identification of a paper in

CiteseerX (DOI). Doc ID can be used to quickly locate the relevant files in the data

set. And text field is extracted from the full text files, but we only index the first

400 words of the text instead of the whole text, since the purpose of indexing text

is to find the possible titles and the titles usually appear in the first few lines. And

moreover, if we include too many text of a paper (especially the tailing part), it can

cause some other paper titles included, e.g. cited paper titles listed in references.

Paper full text need to be normalized before add into Lucene index. We only do

lightweight normalization for full text here by lowering case for all English letters

and delete punctuation. As for index searching, we use a highly efficient Lucene

function called: MMapDirectory to search the full text field of the index. We also

visualize our indexed CiteSeerX data set via web page search engine using Django

web framework [8].

Incremental Search

Algorithm 1 shows the whole process of data set merging to create our big scholarly

training set. For each of the 2.8 million DBLP papers, use title metadata to search the

CiteSeerX full text index Ic. If only one CiteSeerX match returned, directly add the

match into the merged data set. However, if multiple CiteSeerX matches returned,

more metadata need to be used to further purify the matching result. Considering

the case that DBLP title may match some incorrect titles, which means match a part

of the full text that is not the CiteSeerX paper real title. Such cases could happen

especially when DBLP title is short. Thus, using other DBLP metadata (e.g. authors,

venue) can prevent such wrong matches. We call this process as ”incremental search”.

As can be seen in Algorithm 1, if multiple CiteSeerX papers are matched with

one DBLP title searching, incremental search further extracts authors and venue

metadata and split the two metadata into words, search each word in every matched

CiteSeerX papers’ full text. There are two stop criterion for the incremental search

iteration process: one is all of the authorList, venue words has been searched and

all the remaining CiteSeerX matches will be retained; the other is before all the

23

www.manaraa.com

3. DATA SET

Algorithm 1 Data Set Merging Algorithm
Require: DBLP D, CiteSeerX full text index Ic

initialize merged set CD = ∅
for each paper pi in D do
tp ← getT itle(pi)
{ta} ← getAuthorTerms(pi)
{tv} ← getV enueTerms(pi)
normalize tp, all ta ∈ {ta}, all tv ∈ {tv}
{Hit} ← searchIndex(Ic, tp)
if only one Hit found then

add [pi, Hit] into CD
else

for each t in {ta}+ {tv} do
for each Hit in {Hit} do

if t not in Hit.fulltext then
delete Hit from {Hit}

end if
end for
if size of {Hit} = 0 then

roll back to the {Hit} at last iteration
break

end if
end for
add [pi, {Hit}] into CD

end if
end for
Return CD

24

www.manaraa.com

3. DATA SET

Predicted Class→
Actual Class ↓

in DBLP not in DBLP

in DBLP 33 (TP) 2 (FN)

not in DBLP 1 (FP) 64 (TN)

TABLE 4: Confusion Matrix for the Merging Algorithm

authorList, venue words has been searched, CiteSeerX papers has been reduced to a

minimum number > 0, then keep these minimum amount of matches.

3.1.4 Evaluation of the Merging Algorithm

From the 2.1M CiteSeerX papers, we randomly select 100 papers and manually label

them as positive class (in DBLP) or negative class (not in DBLP). We use the following

four steps to manually label each CiteSeerX paper:

1. Check full text to manually obtain the real paper title.

2. Search the real paper title in DBLP title index.

3. Compare authors. Matched paper should have same title and authors.

4. If there are difficulties to judge the paper (e.g. no authors given), search and

download the original PDF paper to compare with DBLP metadata.

Finally we labeled 35 out of 100 papers as positive class, and we applied the

100 sampled set to the incremental search algorithm. We use the confusion matrix

to record the result. 34 papers are predicted as positive, only 1 of them are False

Positive. And False Negative is 2. The Precision is 0.971, Recall is 0.943 and F1

measure is 0.957. Table 5 shows the 3 False cases. For the FP case, the DBLP title

is the prefix of the matched CiteSeerX paper title, and the author of the two papers

are the same. For the two False Negative cases, both of the matches are reduced by

incremental search due to lack of meta data in the matched CiteSeerX documents.

25

www.manaraa.com

3. DATA SET

Wrong
Case

CiteSeerX Paper DBLP Paper

FP1 Scalable Load-Distance Balancing in
Large Networks

Scalable Load-Distance Balancing

FN1 Proving and Disproving Termination of
Higher Order Functions
(Lack of authors, deleted by incremental
search)

Proving and Disproving Termination of
Higher Order Functions

FN2 Bitvalue Inference Detecting and Exploit-
ing Narrow Bitwidth Computations
(Lack of venue, deleted by incremental
search)

Bitvalue Inference Detecting and Exploit-
ing Narrow Bitwidth Computations

TABLE 5: False Positive and False Negative cases

3.1.5 Results and Conclusion

505,352 (18.1%) DBLP records and 665,483 (31.4%) CiteSeerX documents are matched.

Note that duplicates exists in CiteSeerX data set, in some cases there are multiple

CiteSeerX documents matched one DBLP record. Among the matches, 331,453 DBLP

records and CiteSeerX documents has unique one-to-one mapping, while the other

334,030 CiteSeerX documents matched the remaining 173,899 DBLP records (multi-

ple mapping exists). Finally, we separate 665,483 CiteSeerX papers as positive class

(CS papers), and all the remaining 1,452,639 papers are treated as negative class

(non-CS papers).

3.2 arXiv

arXiv is also a freely accessed highly-automated academic papers library which was

started in 1991 and maintained by Cornell University Library. It collected almost

millions of articles in physics, mathematics, computer science, statistics, etc. Our

arXiv collection contains around 840,218 papers. Different from CiteSeerX, the paper

text contains paper title + abstract, which is much shorter of text in CiteSeerX data

set. However, we observed that duplicates existed in arXiv data set. Our duplicate

detection method is to compare the URL of a paper, if multiple papers have the same

URL, we randomly keep one of them. After removing duplicates, 659,215 papers are

retained. arXiv provides the label (e.g. CS, Math, Physics, etc.) for each paper.

26

www.manaraa.com

3. DATA SET

Before Remove Duplicates After Remove Duplicates

CS 127,872 84,172

Math 297,094 215,143

Physics 88,896 65,564

TABLE 6: #Papers of CS, Math, Physics in arXiv Data Set

Table 6 shows the amount of papers in the three essential categories: CS, Math,

Physics before and after removing duplicates.

arXiv can also be a very good scholarly data set for our experiments for the

following three reasons:

1. Shorter and cleaner full text: Each paper text only have title + abstract, the

text length is much shorter than full texts in CiteSeerX data set, using such

text can perform quick test for our CS classification system. Moreover, the

texts are parsed from Latex file, which can obtain a much better and cleaner

text compared with CiteSeerX full text which is parsed from the web crawled

PDF files.

2. Big training data size: The size of the data set is also big enough, more than

80,000 CS papers included.

3. Better data labeling: The class label of the papers are manually checked, and

the research fields of the papers are strictly defined, for those non CS papers,

they are in multiple fields, e.g. Physics, Mathematics, Biology, etc..

In this thesis, we conduct our classification experiments based on the balanced

data set, and after remove duplicates, there are around 80,000 CS papers remained.

Therefore, we make the data set balanced by randomly sampling 80,000 CS and

80,000 non-CS papers, to finally create a training set that includes 160,000 papers.

Note that non-CS class represents all the other categories except CS.

27

www.manaraa.com

CHAPTER 4

Researches on Citation Graphs

As a side research, this chapter mainly dig out the citation network patterns for

DBLP and CiteSeerX. Citation graph is a directed graph that each edge represents a

citation relation. If node A cited node B, then an edge A→ B should be added into

the citation graph. The in degree of a node represents how many citation received

of this node, and the out degree represents how many papers this node cited (size of

references of this node).

Based on CiteSeerX and DBLP, we define the following three different kinds of

citation graphs:

Definition 1 (Graph A) Graph GA = (VA, EA), where VA is a subset of papers in

DBLP, and EA is a set of citation links extracted from publishers ACM and IEEE.

Definition 2 (Graph C) Graph GC = (VC , EC), where VC is the set of papers in

CiteSeerX, and EC is the set of citation links in CiteSeerX.

Definition 3 (Graph B) Graph GB = (VB, EB), where VB ⊆ D is s subset of papers

in DBLP, and EB is the set of citation links in CiteSeerX. i.e.,

EB = {(a, b)|a, b ∈ D ∧ (a, b) ∈ EC} (1)

4.1 Graph A: DBLP Citation Graph

For DBLP data set, the citations haven’t been provided. However, based on our

knowledge, ArnetMiner [31] used ACM and some other minor citation records to

28

www.manaraa.com

4. RESEARCHES ON CITATION GRAPHS

A B C
Number of Edges 4,191,677 1,244,002 4,277,924

Number of Nodes 781,108 352,926 970,586

Average Degree 5.4 3.5 4.4

TABLE 7: Statistics of citation networks A, B, and C. All the isolated nodes are
excluded.

build the citation graph among DBLP papers. Until now, their newest data set

collection contains 2,146,341 DBLP papers, and the corresponding citation graph

contains 781,108 DBLP papers and 4,191,677 citation edges (isolated nodes are not

included). The average citation degree is 5.366. We use A = {VA, EA} to represent

the DBLP citation graph. The node set {VA} includes all the connected 781,108

papers, and {EA} is the set of connection among {VA}. Table 7 includes the statistics

of graph A. The connected nodes are only 36.39% among all of their DBLP paper

collections, the remaining nodes don’t have any citation relations (either in degree:

citation received or out degree: citation made) present in ArnetMiner citation graph.

However, the ArnetMiner citation relations are only parsed and obtained from ACM

and few other outside sources. Thus, the citation relations maybe incomplete among

those DBLP papers.

4.2 Graph C: CiteSeerX Citation Graph

In CiteSeerX data set, citation string metadata is provided in each CiteSeerX paper

which can be used to reveal the citation graph among papers in CiteSeerX data set.

An example of a citation string metadata is shown in Fig. 3. ”raw” tag contains

the original citation string parsed from full text. Other tags contains the metadata

furthered parsed from the original citation string, such as cited paper title. Based

on our observation, the further parsed metadata are not as accurate as the original

citation string. The best way to find out the citation relations is to match paper

metadata (e.g. title, authors) with the citation string, in order to relate a paper to its

cited paper. For example, assuming that paper A has a citation string c; and there

29

www.manaraa.com

4. RESEARCHES ON CITATION GRAPHS

FIGURE 3: Example of citation metadata in CiteSeerX

is a paper B, we search its title string tB and all the authors {aB} in c, if both tB

and {aB} can be found in c, then we can say that citation string c refers to paper

B, which means paper A cited paper B, an edge A → B is found. The algorithm is

described in Alg. 2.

Due to the huge amount of papers in CiteSeerX data set, we need to use Lucene

to index citation strings in order to increase the searching efficiency. There are two

fields related to each indexed document:

• CiteSeerX Document ID (DOI)

• Original Citation String

Assuming that a paper has n citation strings, then this paper should have n

indexed documents, each indexed document related to one unique citation string.

Having the citation string index, the algorithm start by iterating each matched paper

pi in the merged data set, using DBLP title metadata to search the index, return all

the matched indexed documents {Hit}, then use DBLP authors metadata to filter

the matched results and obtain the final result set {Hit}∗. For each matched result

Hit in {Hit}∗, add the edge Hit → pi into citation graph. (Hit is the DOI related

to the matched citation string)

4.2.1 CiteSeerX Title Correction

Another problem of constructing the citation graph is the inaccurate CiteSeerX meta-

data. Although citation string has relatively high accuracy, the accuracy of title

metadata is very low (only 60%). Moreover, title metadata is crucial for matching

citation strings; if title metadata is wrong, especially if the title metadata is very

30

www.manaraa.com

4. RESEARCHES ON CITATION GRAPHS

Algorithm 2 Citation Graph for CiteSeerX Data Set
Require: citation index Ic, CiteSeerX C, title train set {t}

train classifier {t} → ClassifyT itle() for title correction
for each paper pi in C do
tp ← getT itle(pi)
if ClassifyT itle(tp)→ false then

jump to next paper
end if
{ta} ← getAuthor(pi)
{Hit} ← searchIndex(Ic, tp)
for each Hit in {Hit} do

if all ta ∈ {ta} found in Hit.citString then
record the graph edge: Hit→ pi

end if
end for

end for

Before After

Number of Edges 10,595,956 4,277,924

Number of Nodes 1,286,659 970,586

Average Degree 8.2 4.4

TABLE 8: Difference after duplicate removal for graph C.

short, it can cause huge amount of wrongly matched citation strings, which will cause

this title (this paper) has huge amount of citation received and most of the citation

relations can be wrong.

Thus, before the searching, we need to exclude wrong titles and also short titles.

As shown in Alg. 2, the first step is to train a classifier for title correction. This is a

typical two class classification task. Positive class is real titles, negative class is wrong

titles. After train the classifier, for each CiteSeerX papers, we need to use it to first

check if the title is predicted as positive class, then search the title in citation string

index. The classification algorithm we used is Naive Bayes, and the title training

set is provided by our research partner Dr. Yan Wang at the Central University of

Finance and Economics in China.

4.2.2 Merging Duplicates

After executing Algorithm 2, we obtain a citation graph that contains 10,595,956

edges and 1,286,659 connected nodes as shown in Table 8.

31

www.manaraa.com

4. RESEARCHES ON CITATION GRAPHS

However, in CiteSeerX data set, an in-neglectable problem is that there may

exist multiple documents with different DOI (Document ID) that refer to the same

paper, or different versions of the same paper. CiteSeerX data set is constructed by

crawling documents from the web, thus it is possible that some papers, especially

popular papers, can appears on multiple web locations. For example, paper: ”Graph-

Based Algorithms for Boolean Function Manipulation”, which is a famous Computer

Science paper, has been collected into the CiteSeerX data set 5 times with 5 different

document ID. This paper has very high in-degree (number of citations received), which

is 4030 among the whole data set, and all the 5 duplicates have the same in-degree

number (4030). In order to eliminate the effect of duplicate papers to the citation

graph statistics, near duplicate detection need to be performed to remove redundant

duplicates that only keep one copy of each unique paper. We use the following two

step duplicate removal steps to remove redundant duplicate papers:

1. Full text detection: Apply SimHash to the full text of each paper in CiteSeerX

data set to find out all duplicate document pairs. By creating the fingerprint

for each document, we can estimate the similarity by calculating the hamming

distance between each document pair. We also use Jaccard Similarity to further

validate the similarity between each document pair. This work is provided by

our research partner Yi Zhang.

2. Metadata detection: for papers that have same title and same in-degree count,

only keep one paper, remove all the other redundant papers.

As a result of full text detection, we obtained 1,003,774 duplicate pairs among

CiteSeerX papers. 221,548 papers are included in these duplicate pairs. For all of

these duplicate pairs, we also find out the duplicate groups, for example: if paper

A and paper B is a duplicate pair, and paper A and paper C is also a duplicate

pair, we say paper [A,B,C] belong to the same duplicate group. We only keep one

paper in each duplicate group. In total there are 100,668 duplicate group found, and

221, 548 − 100, 668 = 120, 880 papers were removed from the citation graph in the

first step.

32

www.manaraa.com

4. RESEARCHES ON CITATION GRAPHS

In the second step, 180,087 duplicate groups were found and 221,388 duplicates

were removed. Table 8 shows the statistics of CiteSeerX graph before and after

removing duplicates. We use C = {VC , EC} to represent the CiteSeerX citation graph

after removing duplicates. We can see that after removing duplicates, the half of the

citation edges are deleted, and the average degree among CiteSeerX papers (nodes)

also almost decrease by half. This is because lots of high in-degree papers can have

duplicates, removing those duplicates significantly decrease the number of total edges.

4.3 Graph B: Graph for Merged Data Set

Graph B is the restriction of C on the nodes from DBLP. At the previous section, we

have illustrated our merged data set that represents the intersections of CiteSeerX

and DBLP papers, graph B is actually the citation graph of the merged data set,

and the citation relations are extracted from CiteSeerX metadata. Graph B is also

a sub-graph of Graph C. Table 7 lists the statistics of graph B. 1,244,002 edges

(29.08%) out of all the 4,277,924 Graph C edges are kept in graph B. There are

352,926 CiteSeerX papers connected in this sub-graph.

4.4 Comparison Between Three Graphs

4.4.1 Adding DBLP citations (Graph A vs. Graph B)

Nodes in graph A and graph B are all within the range of DBLP data set, however,

edges in B are constructed using CiteSeerX citation string metadata. Based on our

experiment, for all the 1,244,002 citation relations (edges) in citation graph B, 325,775

edges can be found in ArnetMiner’s DBLP citation graph, and 1, 244, 002−325, 775 =

918, 227 edges can be added into the whole ArnetMiner citation network A. Con-

sidering that originally ArnetMiner has already obtained around 4 million edges for

the DBLP data set, now we can expand the DBLP citation network by adding an

extra 918,227 edges. Besides, there are still some nodes in graph B not in A, these

nodes are the papers in DBLP but not included in Aminer data set, we use VB − VA

33

www.manaraa.com

4. RESEARCHES ON CITATION GRAPHS

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

#Citations

P
e

rc
e

m
ta

g
e

 o
f

P
a

p
e

rs

Paper Published and on Web

Paper only Published

(a)

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

#Citations

P
e

rc
e

m
ta

g
e

 o
f

P
a

p
e

rs

papers in B and in A

Paper in B not in A

(b)

FIGURE 4: (a) Citation Distributions among nodes in AB and AB; (b) Citation
Distributions among nodes in BA and BA

(a) (b)

FIGURE 5: (a) Node intersection of A and B; (b) Edge intersection of A and B

to represent these nodes, and there are 170,665 such nodes. For the 918,227 new

edges, there are 707,126 (77%) edges involved with these 170,665 nodes, the remain-

ing 211,101 (23%) edges are new connections among existed Aminer nodes. Fig. 4

(b) shows the citation differences between the 182,661 nodes (red nodes in Fig. 4

(b)) in VA ∧ VB and 170,665 nodes (blue nodes in Fig. 4 (b)) in VB − VA. We can

see that nodes in VA ∧VB has higher average citations. But the largest citation value

belongs to one of the nodes in VB − VA (the rightmost blue node). Fig. 4 (a) shows

the in-degree distributions for VA∧VB nodes (red nodes) and VA−VB nodes. We can

see that intersected nodes in Graph A also have higher average in-degree in graph A

compared with the nodes that not in CiteSeerX data set.

34

www.manaraa.com

4. RESEARCHES ON CITATION GRAPHS

A B
Papers in VA ∧ VB 10.5 4.7

Papers in VA 5.4 n/a

Papers in VA − VB 2.9 n/a

Papers in VB n/a 3.5

Papers in VB − VA n/a 2.3

TABLE 9: Comparisons Between Graph A,B

4.4.2 Published, on web papers (Graph A vs. Graph C)

Thinking of the two data set in another way: DBLP data set is manually collected

through recognized computer science publications, thus the papers included in DBLP

can be treated as published papers. On the other hand, CiteSeerX data set is auto-

matically crawled from the web, some of the crawled papers maybe not published,

even not academic research papers, thus the papers included in CiteSeerX can be

treated as on web papers. The difference between Graph A and Graph C can be

visualized as the relationship between published papers and on web papers. The

major comparison we made is to utilize the in-degree (number of citation received)

distribution. We define the concept ”published” and ”on web” strictly as follows:

• AC : (Only published) in DBLP data set but not in CiteSeerX data set.

• AC , CA: (Published & On web) the intersection of DBLP and CiteSeerX papers.

• CA: (Only on web) in CiteSeerX data set but not in DBLP data set.

What we want to conclude is that we expect the papers that not only published

but also on web can have the highest average in-degree, since we believe that famous

published papers must be available on web and even have multiple distributions and

versions on different web sources (which is also a major reason of duplicates in Cite-

SeerX data set). Since we got two citation graphs: A and C, firstly we separate A

into AC and AC to compare the in-degree differences between published & on web

papers and only published papers. From Fig. 6 (a) we can clearly see that published

& on web papers have higher in-degree, and the average in-degree is 10.459, while

35

www.manaraa.com

4. RESEARCHES ON CITATION GRAPHS

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

#Citations
P

e
rc

e
m

ta
g
e
 o

f
P

a
p
e
rs

Paper Published and on Web

Paper only Published

(a)

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

#Citations

P
e
rc

e
m

ta
g
e
 o

f
P

a
p
e
rs

Paper Published and on Web

Paper only on Web

(b)

FIGURE 6: (a) In-Degree distribution of published & on web papers and only pub-
lished papers using ArnetMiner Citation Graph; (b) In-Degree distribution of pub-
lished & on web papers and only on web papers using CiteSeerX Citation Graph

A C
Papers in VA ∧ VB 10.5 5.8

Papers in VA 5.4 n/a

Papers in VA − VB 2.9 n/a

Papers in VB n/a 4.4

Papers in VB − VA n/a 3.4

TABLE 10: Comparisons Between Graph A, C

published papers only have 2.901 average in-degree. Secondly, we separate C into CA
and CA to compare published & on web papers and only on web papers. From Fig. 6

(b) we can see the difference is smaller than Graph A, but still, published & on web

papers have higher average in-degree which is 5.832; while on web papers have 3.426

average in-degree.

4.4.3 Duplicates and Citations

It can be concluded that duplicates are caused by multiple web locations of the same

paper, it is not hard to imagine that if a paper is more popular, or has higher quality,

it would be posted on the web more often, which means is has more duplicates.

An important measurement of the quality of a paper is the citation count: how

many citations it received since it was published. Therefore, the number of citations

received should be proportion to the number of duplicates. Based on the hypothesis,

36

www.manaraa.com

4. RESEARCHES ON CITATION GRAPHS

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Duplicate Occureence

A
v
e

ra
g

e
 C

it
a

ti
o

n
 C

o
u

n
t

(a)

0 1 2 3 4 5 6 7 8 9
0

50

100

150

Duplicate Occureence

A
v
e
ra

g
e
 C

it
a
ti
o
n
 C

o
u
n
t

(b)

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Duplicate Occureence

A
v
e

ra
g

e
 C

it
a

ti
o

n
 C

o
u

n
t

(c)

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Duplicate Occureence

A
v
e

ra
g

e
 C

it
a

ti
o

n
 C

o
u

n
t

(d)

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10
Duplicate Occureence

A
v
e

ra
g

e
 C

it
a

ti
o

n
 C

o
u

n
t

(e)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10
Duplicate Occureence

A
v
e

ra
g

e
 C

it
a

ti
o

n
 C

o
u

n
t

(f)

FIGURE 7: Citation count against duplicate occurrence. (a, b) average citation
count against duplicate occurrence; (c, d) loglog plot of (a, b); (e, f) box plot; (a, c,
e) CiteSeerX Graph; (b, d, f) AMiner Graph

we conducted an experiment that compare the relationship between the number of

citations received and the number of duplicates. Fig. 7 shows citation counts as a

function of duplicate occurrences. Note that the duplicates count were analyzed based

on CiteSeerX full text, first we use the whole CiteSeerX citation graph C to directly

reveal the relationship between citations and duplicates. Fig. 7 (a) (c) (e) shows

the relations between CiteSeerX paper duplicate count and CiteSeerX paper citation

received (in-degree in citation graph). We can see that the citation counts almost

grows linearly with the increase of the duplicate occurrences. Note that we limit the

duplicate occurrence within the range of 10 is because larger duplicate occurrences

have very few amount of papers which may not reveal the real average citation count

level. We can also see the outliers when the duplicate occurrences are large. The

bottom box plot also shows the linearly increasing phenomenon.

We also utilize the Aminer citation graph to reveal whether the Aminer citation

count can also in proportion to the duplicate occurrence. Although we don’t have

the duplicate statistics on Aminer (DBLP) data set, based on the merged data set

of CiteSeerX and DBLP, we can obtain the duplicate statistics of the merged part of

37

www.manaraa.com

4. RESEARCHES ON CITATION GRAPHS

DBLP data set by transforming from CiteSeerX duplicate statistics (each matched

CiteSeerX paper is associated with Aminer paper). Fig. 7 (b) (d) (f) shows the

citation counts against duplicate occurrences by using citations in Aminer citation

graph. We can see that there is also a linearly increasing phenomenon especially when

the duplicate occurrences are small.

38

www.manaraa.com

CHAPTER 5

Classification System Methodology

This chapter illustrates our methodology for the implementation of classification sys-

tem in detail.

5.1 Difficulties of Classifying Academic Papers

Most of the previous text classification related researches used Reuters data set,

which is the most commonly used data set. Compared with such kinds of data sets,

classifying academic papers have the following three difficulties:

• Length of a paper is usually much longer than common text-based documents

(e.g. Reuters data set)

• Feature dimensionality could be extremely large (#words)

• Length, format of different papers varies greatly.

Feature is the basic element that input into the classifier to train the classifier.

In text classification, the basic concept is that each distinct word is treated as an

individual feature. However, when it comes to the text of academic papers, the

amount of different words can be quite large. This will lead to very high feature

dimensionality. The performance and efficiency of classifier is highly related to the

following three aspects:

1. The number, quality of features: in order to train the classifier more effi-

ciently, feature dimensionality need to be lowered down and informative features

need to be included in the reduced feature set as many as possible.

39

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

2. Classification Algorithm: also a critical factor of deciding the performance,

efficiency and accuracy of the whole classification system. Because of the nature

of academic papers and large amount of training data set, more efficient, less

complex classification algorithm is needed.

3. Feature Weights: Due to the different length, format of papers, more balanced

weighting scheme instead of pure Term Frequency should be used to ensure more

balanced level of classification precision and recall.

5.1.1 Lower Feature Dimensionality

There are lots of ways to lower the feature dimensionality. Feature selection is one of

the most frequently used feature dimensionality lowering method. During the classi-

fication process, different features have different capabilities of making the classifier

more or less easy to classify a document into one specific class. The goal of feature

selection algorithms is to select highly capable and informative features out from all

the other features.

Language modeling is also an effective way to not only lower the feature dimen-

sionality, but also normalize text to increase the performance and accuracy of the

classifier. Our main language modeling method used in this thesis is N-gram. N-

gram represent a contiguous sequence of N items from a given sequence of text.

Higher value of N can make features more related to context, since longer phrases are

used as features. Other text normalization techniques we used includes case folding,

regular expression normalization, stop words removal and stemming.

5.1.2 More Efficient Classifier

There are lots of classification algorithms existed. However, in the field of text clas-

sification, Naive Bayes, SVM and Logistic Regression are the most commonly used

classification algorithm. Among the three algorithms, Naive Bayes is the most ef-

ficient and simplest one, with much faster running speed and much lower memory

consumption. Moreover, previous researchers have already proved that although the

40

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

independent assumption is clearly unreliable in most real-world tasks, Naive Bayes

can still performs surprisingly well [21]. Especially in our case, applying much so-

phisticated algorithms (such as SVM) can be unfeasible due to scalability issue.

5.1.3 Deal with length variations

In most of the previous works, the authors didn’t mention feature weighting schemes.

In each document, each corresponding feature has a weight (feature value), in default

the weight is assigned as Term Frequency (TF): the number of occurrences of the

feature in a document. However, when it comes to academic papers, only simply

using TF as feature weight is not enough. The most critical problem is the length of

papers (especially papers from different journals, conferences) can be quite different.

Under such circumstances, features in long papers will have higher TF, which may

cause strong effect to the classifier to make the classifier more possible to classify a

new document into long paper’s class. Thus, instead of using term frequency directly,

we need to use more advanced and balanced feature weighting scheme in order to

solve the length variations problem.

5.2 The proposed solution

Tackling the above three difficulties, our classification system combine various feature

selection algorithms, language models and feature weighting schemes to produce final

feature set as a input for the classification algorithms. In order to ensure the efficiency

while the size of training set is extremely large, we implement two models of Naive

Bayes algorithm as our major classifier. However, as a comparison, we also used

the Logistic Regression classifier implemented by Sci-kit learn[25]. As shown in Fig.

8, process full text model correspond to transfer and normalize original text, build

feature set corresponds to language modeling and feature weight processing. We

implemented two different representations of feature set, one is N-gram models, the

other is sentence2vec model. Feature set is the input of the classification system.

Inside our classification system, there are two core components: feature selector and

41

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

CiteseerX

CS papers

(merged

with DBLP)

other

papers

Process
Full Text

Build
Feature

Set

Classifier Evaluation

Training
Set

Test
Set

Feature
Selection

Build
Classifier

F1
Measure

Output the
best

Classifier

N-fold Cross Validation

FIGURE 8: Classification System

classifier. We implemented three feature selection algorithms (Mutual Information

(MI), χ2 and Pointwise Mutual Information (PMI)). We separate the feature set into

training set and test set in order to apply cross validation scheme to evaluate different

classifiers to finally output the best one. In the following sections, we will introduce

our classification system in detail.

5.3 Language Modeling

5.3.1 N-gram

1. Regular expression tokenization: in order to create a purer text environ-

ment for the classifier, we use Regular expression tokenizer provided by NLTK[2]

to tokenize word into tokens and each token contains only alphanumeric letters.

2. Case folding: transform all upper case English letters into the corresponding

lower case letters, in order to make the classifier case insensitive.

3. Remove stop words: stop words are the extremely common words which are

42

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

FIGURE 9: Example of Language Modeling

meaningless to the classification decision. Most typical stop words in English

can be ”a”, ”an”, ”the”, ”of”, etc. In this thesis, we use NLTK [2] English Stop

Words List to filter stop words out of the text.

4. Stemming: it is used to integrate different forms of English words. Stemming

can be defined as a heuristic process that chops off the ends of words to elim-

inate the effect of derivation of words. For example: automate, automatic and

automation can be all integrate into the same word. In this thesis, we use Porter

algorithm [26] as our English language stemmer.

5. N-gram: It is used to create a set of features as an input for training the

classifier. We use two different N-gram methods: Uni-gram and Bi-gram. Uni-

gram means only use 1 word as feature, every distinct word is a unique feature,

while Bi-gram means use 2 continuous words as a feature, every distinct 2-word

phrase is a unique feature.

Fig. 9 shows a simple example of how we implement the language modeling to

transform original text into feature set. First we do tokenization and case folding,

assuming we only keep English letters, meaningless characters such as ”[19]” will be

removed. The second step is stop words removal, extremely common words ”such”,

”as”, ”on”, ”the” and ”of” are removed. The third step is stemming, the suffix

of ”interfaces” is removed. Then the final step is using Uni-gram and Bi-gram to

43

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

transform normalized original text into feature set. Uni-gram set has 5 features, and

Bi-gram set has 4 features.

Algorithm 3 Uni-gram, Bi-gram Language Modeling
Require: Tokenizer, StopwordList, Input String Str
UniGramSet = BiGramSet = ∅
termList = tokenizer(str)
for i = 0 to size(termList)− 1 do

if termList[i] not in StopwordList then
termList[i] = lowercase(termList[i])
termList[i] = potterStemmer(termList[i])
UniGramSet← termList[i]

end if
i = i+ 1

end for
BiGramSet = create Bi-gram(UniGramSet)
return UniGramSet, BiGramSet

5.3.2 Sentence2vec

Sentence2vec [16] is a deep learning approach to learn the embedding of sentence from

the training data set. One typical sentence2vec model is Distributed Memory Model

of Paragraph Vectors (PV-DM), which trains a sentence vector along with the word

vectors to predict the missing content. In this model, paragraph vector represents the

missing information from the current context and can act as a memory of the topic

of the paragraph. Sentence2vec have several parameters that can be optimized, the

most important parameters are window-size, negative sample size, and the dimension

of the vectors.

The dimension of vectors decides the feature dimensionality. Compared with

N-gram models that treat each different grams (Uni-gram or Bi-gram) as a unique

feature, sentence2vec modeling can significantly lower down the feature dimensional-

ity, which make it applicable to use other classification algorithms such as Logistic

Regression.

44

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

5.4 Feature Weights

Feature weight is also a critical aspect to affect the accuracy of the classifier. In this

thesis, we use the following three different weighting schemes, including the default

TF as feature weight, and two advanced normalized feature weights in order to deal

with the length variations and text complexity in academic papers.

5.4.1 Term Frequency

The simplest weighting scheme can be Term Frequency (TF), which is defined as

the number of occurrences of a feature in one document. Thus, each document is

represented as a set of {ti : fi}. ti is the i-th feature in the document, and fi is the

term frequency of ti.

5.4.2 Length Normalization

Based on the feature weight normalization process proposed by [27], the classifier can

more realistically handle text while not giving up the advantages of Multinomial Naive

Bayes. We produce the following equation for the feature weight length normalization:

f ′i =
fi√∑
k(fk)2

(1)

By using length normalization, we don’t change the length of a paper by selecting

part of the paper to make every paper has equal length, instead, we want to eliminate

the effect of length to the feature weights. For example, fi appears n times in paper

A which length is t. There is another paper B which length is 2t, and fi appears 2n

times in B. In order to eliminate the effect of length, we cannot just directly weight

FiA as n and fiB as 2n, we need to assign the same weights to both of them, since B

is 2 times longer than A. [27] showed that longer documents have larger probabilities

for larger term frequency values, even worse, when the term frequency value increase,

the term frequency probability gap between long documents and short documents

keep enlarging.

45

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

5.4.3 Full Normalization

Except length problem, there are also other feature weighting question such as should

rare words be assigned with higher weight? One step further, we can combine TF-

iDF weighting scheme together with the length normalization, which we called as Full

Normalization. The equation is shown as follows:

f ′i = log(1 + fi) · log
N∑
d δid

f ′′i =
f ′i√∑
k(f ′k)2

(2)

The first equation that calculates f ′i is the TF-iDF normalization. Note that the

TF here uses logarithm frequency, and we add one before using logarithm to prevent

0 term frequency; also add 1 has the advantages of being an identity transform for

zero and one term frequency values. iDF (inversed document frequency) is to give

more weight to rare occurred words and diminish the strong effect of common words.

The second equation that calculates f ′′i is length normalization, which is calculated

after obtain TF-iDF weight f ′i .

5.5 Feature Selection Issues

Feature selection is the process of selecting a subset of relevant features for use in

the classification model construction, and based on the assumption that data set

contains lots of redundant or irrelevant features. It is very important as it can lower

the feature dimensionality and exclude useless features that can improve both the

classification efficiency and accuracy.Feature selection process includes evaluation and

ranking. There are two models for feature evaluation: filter model and wrapper model.

Filter model uses statistical characteristics of the features for evaluation, which is

independent from the classifier, and wrapper model calculates the score of a subset

of features by inducing a classifier. High time complexity is the major drawback

of wrapper model. Due to the high feature dimensionality and text complexity in

our case, we only use filter model. We use three filter model algorithms: Mutual

46

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

Information (MI), χ2, Pointwise Mutual Information (PMI). Moreover, we use simple

ranker method for feature ranking, which ranks the features based on their scores in

an descending order.

5.5.1 Mutual Information

Mutual Information measures the information between classes and features. The

value of a feature’s mutual information Mi(w) is decided by the level of co-occurrence

of class i and the feature w. In other words, if a feature w is highly related to

only one specific class, it will has higher mutual information score since having this

feature the classifier can more easily make the correct decision. However, if a feature

w is independent with any classes, for example, it occurs equal times in both classes’

documents, then this feature has no value to the classifier, it should be scored as the

lowest ranked feature.

Generally speaking, Mutual Information measures the difference between expected

and observed frequency. The difference measurement is conducted by using the fol-

lowing equation:

I(U,C) =
∑

et∈{0,1}

∑
ec∈{0,1}

Netec

N
log

Netec

Eetec

(3)

We use U to represent the event of a feature occurring or not, and use C to rep-

resent the event of a class occurring or not. Since in our case, we only do two class

classification (CS and non-CS), U and C are binary values, 1 means occurring, 0

means not occurring. N has different meanings when using Bernoulli model (number

of training documents) and Multinomial model (the total of lengths of all training

documents). Netec is the observed frequency, equals to N · P (U = et, C = ec),which

means the actual probability (frequency) of these two events happen together; and

Eetec is the expected frequency, equals to N · P (U = et) · P (C = ec), which means

the probability (frequency) of these two events happen together given that these two

events are independent with each other. As can be seen in the equation, Mutual Infor-

mation uses division calculation to measure the difference between observed frequency

47

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

FIGURE 10: Definition of Observed Frequency

and expected frequency. If a feature is really totally independent with a class, which

means the observed frequency Netec equals to the expected frequency Eetec , then the

mutual information score for this feature I(U,C) will equal to 0, since
Netec

Eetec

= 1 lead

to log2 1 = 0.

Using the probability of U and C, Mutual Information can be represented as the

following equation:

I(U,C) =
∑
et∈0,1

∑
ec∈0,1

P (U = et, C = ec) log
P (U = et, C = ec)

P (U = et)P (C = ec)
(4)

In order to obtain the Mutual Information score for each feature (distinct word),

we need to calculate the observed frequency and expected frequency for each feature.

Thus, we define the observed frequency matrix as shown in Fig. 10:

Since we have two kinds of events: occurring of class and occurring of features.

There are 2× 2 = 4 different combinations of cases. We use Netec to represent these

four cases. For example, N11 represents both occur of class and feature, which can also

be represented as P (U = 1, C = 1). As can be seen that N11 is the observed frequency

of class and feature occurring together. Accordingly, N10 represent the observed

frequency of feature occurring without class occurring. Based on N11, N10, N01, N00,

we can calculate the expected frequency of these four different cases. Taking N11 as

an example, we have:

• N11: the observed frequency of t and c occurring together.

N11 = N · P (U = 1, C = 1) = N · N11

N
= N11

48

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

Paper

ID

Paper Text Class Label

1 Data Data Computer CS

2 Complexity Data Data CS

Training3 Software Data CS

Set 4 Network Wireless Software Protocol CS

5 Data Climate Business non-CS

6 Economic Popular State Business non-CS

Bernoulli Model Bernoulli Model

CS non-CS CS non-CS

contain Data 3 1 contain Data 5 1

not contain Data 1 1 not contain Data 7 6

TABLE 11: Example of Calculating Observed Frequency

• E11: the expected frequency of t and c occurring together.

E11 = N · P (U = 1) · P (C = 1) = N · N11 +N10

N
· N11 +N01

N
=
N1.N.1

N

E11 is the expected frequency of class and feature occurring together. As we

described before, expected frequency is calculated under the assumption that two

events are independent. Thus, it should be equal to P (U = 1) · P (C = 1). As can

be in Fig. 10, P (U = 1) equals to N11 + N10, which means the frequency of feature

occurs, regardless of whether class occur or not. Accordingly, P (C = 1) equals to

N01 +N00.

The observed frequency Netec has different definitions under Multinomial Model

and Bernoulli Model. In multinomial Model, Netec value is the feature’s document

frequency, for example, N1c means how many class c documents contain feature t,

and N0c means how many class c documents not contain t. In Bernoulli Model, Netec

value is the feature’s class document frequency, for example, N11 means feature t

occur how many times in all class c documents, and N01 means the total of all Term

Frequencies expect feature t in all class c documents.

Table 11 shows an example of how to calculate observed frequency. In the example,

there are 6 documents in the training set, 4 documents belong to CS class, and 2

documents belong to non-CS class. We take the feature Data for example, as can be

49

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

seen in Table 11, Data occurs in 3 CS documents and 1 non-CS document, while 1

remaining CS document and 1 non-CS document don’t contain Data. On the other

hand, if using Multinomial model, N11 is equal to 5 since Data occurs 5 times in all

the 4 CS documents. And the total length of the 4 CS documents is 12 (word count:

3 + 3 + 2 + 4 = 12). Thus, N01 = 12 − 5 = 7. Accordingly, N10 = 1 (Data occurs

only 1 time in non-CS documents), and N00 = 7− 1 = 6.

Based on the four Netec values, we can calculate the Mutual Information score for

each feature. Transformed from equation 12, the final Mutual Information calculation

is based on the following equation:

I(U,C) =
N11

N
log

NN11

N1.N.1

+
N01

N
log

NN01

N0.N.1

+
N10

N
log

NN10

N1.N.0

+
N00

N
log

NN00

N0.N.0

(5)

5.5.2 χ2-statistic

Similar with Mutual Information, χ2 also computes the level of independence between

feature t and a class c. High χ2 value indicates the high dependency of feature and

class, also indicates high difference between observed and expected frequency.

However, the difference between Mutual Information and χ2 is the difference mea-

sure between observed and expected frequency. Compared with Mutual Information

which uses division to measure the difference, χ2 uses subtraction. The measure

equation can be represented as follows:

X2(U,C) =
∑

et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)
2

Eetec

(6)

Netec is the observed frequency and Eetec is the expected frequency just as the

same as definitions in Mutual Information. Still, we can see that if Netec = Eetec ,

the χ2 score will become 0. The χ2 calculation process is the same with Mutual

Information, first we need to obtain the four Netec values, and then calculate the

final score X2(U,C). The final calculation equation can also be transformed into

calculating Netec values, which is shown as follows:

50

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

X2(U,C) =
(N11 +N10 +N01 +N00)× (N11N00 −N10N01)2

(N11 +N01)× (N11 +N10)× (N10 +N00)× (N01 +N00)
(7)

5.5.3 Pointwise Mutual Information

PMI(U,C) =
∑

ec∈{0,1}

∣∣∣∣ log
N1ec

E1ec

∣∣∣∣ (8)

As can be seen in the above equation, PMI also use division to measure the

differences between observed and expected frequencies. However, PMI don’t consider

the probability of event et = 0, only the probability of occurring feature t is considered.

This character makes PMI tend to score more exclusive (in only one specific class)

but unpopular and strange words to the top. Using the Netec representation, the PMI

calculation equation can be rewritten as follows:

PMI(U,C) =

∣∣∣∣ log
NN11

N1.N.1

∣∣∣∣+

∣∣∣∣ log
NN10

N1.N.0

∣∣∣∣ (9)

N1c is the occurrences of feature t in class c. We can see that different from MI,

N0c is not considered. N.c is the total length of all documents under class c, and

N1. is the occurrences of feature t in all classes. Therefore, a closer of N1. and N1c

values infer a more exclusive feature. If N1. = N1c, then it represents the feature

t totally only occur in one class. The main reason that PMI can highly score very

exclusive feature is the absolute value it used. A feature which is more exclusive in

c will make smaller value of N1ec , that make
N1ec

E1ec

→ 0, and in consequence make

log
N1ec

E1ec

→ −∞. After using absolute value, this feature will be assigned with a very

high score.

5.6 Classification Algorithms

5.6.1 Naive Bayes Classifier

Naive Bayes Classifier has been widely utilized for many years. It belongs to the

category of probabilistic classifier. It is based on the simple assumption that the each

51

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

feature is independent given the specific class. Moreover, it is bag of words model that

assume the order or position of a word is irrelevant. Naive Bayes Classifier computes

the posterior probability of a class, based on the distribution of the words in the

document, either uses boolean model to represent if a word appear in a document,

or calculates the time of occurrence of a word (Term Frequency) in a document.

Although such independent assumption is unrealistic, the classification result can

still be optimal, especially under zero-one loss, and the attribute dependence is not

necessarily to be considered to improve classification results [9]. In other words, Naive

Bayes classifier can perform surprisingly well even though the independent assumption

is presented.

There are two models of Naive Bayes related to text classification: Multinomial

Model and Bernoulli Model. In the following two sections we will introduce these two

different models in detail.

5.6.2 Multinomial Naive Bayes

The major feature of Multinomial Naive Bayes is that it captures the frequencies of

words in a document [20]. Firstly, we start from the Bayes rule. The equation below

shows the classical Bayes rule in the field of probability and mathematical statistics:

P (c|d) ∝ P̂ (c)P̂ (d|c)
P̂ (d)

→ P̂ (c)P̂ (d|c) (10)

We use c to represent a class, and use d to represent a document. Therefore, P (c|d)

represents the probability of a document d being in a class c. Actually calculating

P (c|d) is the goal of our classification task. We have two classes, use c1 (CS) and c2

(non-CS) to represent them, now for each new test document di, we need to obtain

P (c1|di) and P (c2|di), compare which value is larger. Assume P (c1|di) > P (c2|di),

then we can conclude that di should belong to c1. Note that for each probability, we

add a superscript, that’s because all of these parameters are estimated.

Therefore, the problem is how to obtain P (c|d). We use Bayes rule to transform

the conditional probability, transfer P (c|d) into calculating P (d|c), which is easier to

52

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

obtain. Note that in the Bayes rule equation, we neglect the probability P (d), since

P (d) is a constant that we don’t need to care about, what we really need to calculate

is P (c) and P (d|c). The meaning of P (d|c) is given class c has already happened,

what is the probability of document d occurs. In order to calculate P (d|c), base on

the bag of words model, we can split document d into a set of its words. The equation

is shown below:

P (c|d) ∝ P̂ (c)P̂ (d|c)→ P̂ (c)P̂ (t1 · t2......tnd|c) (11)

The probability of document d occurs can be equalized to the probability of all the

words in document d occur together. Assume document d has nd words (document

length is nd), then we separate each word, don’t need to consider the order or position

of different words, finally the probability P (d|c) can be equalized to P (t1 · t2......tnd|c).

This is called the bag of words model probability transformation.

The final step of the probability calculation is using the independent assumption.

In the field of probability and mathematical statistics, if two incidents A and B

are independent, we can say that P (AB) = P (A) · P (B). Based on the independent

assumption in Naive Bayes, we can separate the conditional probability for each words

in a document. The equation is shown as follows:

P (c|d) ∝ P̂ (c)P̂ (t1 · t2......tnd |c)→ P̂ (c)
∏

16k6nd

P̂ (tk|c) (12)

As we reach this final step, we transformed our goal P (c|d) into estimating P (c)

and P (tk|c). P (c) can be called as the prior probability of class c, it is calculated

using the following equation:

P (c) =
Nc

N
(13)

Nc is the number of class c documents in the training data set, and N is the

number of all documents in the training data set. On the other hand, P (tk|c) is the

conditional probability of word tk occurring in all class c training documents. P (tk|c)

53

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

is equalized as the proportion of tk occurring in all class c training documents.

P̂ (tk|c) =
Tctk + min(1, τ)∑
t́∈V (Tct́ + min(1, τ))

=
Tctk + min(1, τ)∑

t́∈V Tct́ +B ·min(1, τ)

τ = min{Tct́|t́ ∈ V }
(14)

We use Tctk to represent the class term frequency of word tk. However, under fea-

ture weight normalized environment, Tctk maybe normalized by length normalization

and TF-iDF. V is the size of vocabulary (number of features) in the whole training

set. If a word t appears in any of class c documents, add its class term frequency /

or normalized weight; otherwise add 0 if the word doesn’t appear in any of class c

documents. However, there is a special case that we need to take into consideration.

If Tctk = 0, we need to prevent P (tk|c) = 0, which will cause the whole probability

P (c|d) becomes zero. Considering this case, a new test document dnew has word tk,

now we need to calculate the probability P (c|dnew), however, among all class c train-

ing documents, tk haven’t occurred; tk only occurred in the documents of another

class; thus Tctk = 0. In order to prevent such cases, the typical method is add-one

smoothing. Add one to the class term frequency of any words. As for the denomi-

nator, we also need to add some values to ensure the balance. We follow the typical

smoothing method that add the number of total different features (the size of feature

set), which is represented by B. However, if feature weights are normalized, add-one

smoothing maybe no longer appropriate, since the feature weight are not represented

by CTF (class term frequency), instead, they are normalized to a much smaller value

(most of them smaller than 1). Therefore, in the normalized environments, we need

to replace 1 with the smallest feature weight value τ (note that τ > 0), as shown in

equation 14.

There is one more special case that a word in test document never occur in any

of the training documents, then this word will be discarded since we don’t have this

word’s estimated conditional probability.

As conclusion, Multinomial Naive Bayes has two steps:

1. Training: estimate parameters for all classes ci, P̂ (ci) and P̂ (tk|ci) for all features

54

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

appeared in training data set.

2. Test: for a new document d, calculate P (ci|d) based on the estimated parame-

ters.

Algorithm 4 and algorithm 5 further illustrate the process of train and test Multi-

nomial Naive Bayes in detail.

Algorithm 4 Train Multinomial NB

Require: Doc set D, classList C
V ← getV ocabulary(D)
N ← countDocs(D)
for each class c ∈ C do
Nc ← countDocsInClass(D, c)

prior[c]← Nc

N
Tc ← WordsInClass(D, c)
for each each feature t ∈ V do
Tct ← countTF inClass(D, c, t)

condProb[t][c]← (Tct + min(1, τ))

(Tc + len(V) ·min(1, τ))
end for

end for
Return prior, condProb

Algorithm 5 Test Multinomial NB

Require: Test doc d, ClassList C, prior, condProb, V
Wd ← getTokens(d)
for each class c ∈ C do
score[c]← log prior[c]
for each t in Wd do

if t ∈ V then
score[c]+ = log condProb[t][c]

end if
end for

end for
Return arg max

c∈C
score[c]

We use this simple example in Table 12 to illustrate how Multinomial Naive Bayes

works. Assume we have 4 papers in our training set, 3 papers belong to CS class,

and 1 paper belongs to non-CS class. Each of the paper full texts are shown in the

55

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

Paper ID Paper Text Class Label

Training Set 1 Data Data Computer CS

2 Complexity Data Data CS

3 Software Data CS

4 Data Climate Business non-CS

Test Set 5 Climate Business Data Data Data ?

TABLE 12: Example of using Naive Bayes

table. Now we need to predict the class for a new test paper (d5): ”Climate Business

Data Data Data”. First we estimate the probability of d5 under class CS. Based on

the Multinomial Naive Bayes rules, we can calculate P (CS|d5) using the following

equation:

P (CS|d5) ∝ P̂ (CS) · P̂ (Climate|CS) · P̂ (Business|CS) · P̂ (Data|CS) · P̂ (Data|CS) ·

P̂ (Data|CS)

First calculate the prior probability P̂ (CS) =
3

4
as the fraction of CS papers in the

training data set. Then, for each word in d5, estimate the word conditional probability under

CS class. Firstly, for the first word Climate, it appears 0 times in all the 3 CS class training

papers, so we estimate P̂ (Climate|CS) as
0 + 1

8 + 6
=

1

14
. The total of the 3 CS papers’ length

is 8 (3+3+2), and among all 4 training papers there are 6 different words (6 features); thus,

the denominator is 8+6. And the estimation process is the same for the other four words:

Business,Data,Data,Data, P̂ (Business|CS) =
0 + 1

8 + 6
=

1

14
P̂ (Data|CS) =

5 + 1

8 + 6
=

3

7
.

Finally the probability of d5 under class CS is estimated as
3

4
· 1

14
· 1

14
· (3

7
)3 ≈ 0.0003.

Accordingly, the probability of d5 under class nonCS is estimated as
1

4
· 2

9
· 2

9
· (2

9
)3 ≈

0.0001. As a result, d5 has been classified as a CS paper.

5.6.3 Bernoulli Naive Bayes

Different from Multinomial model, Bernoulli Naive Bayes only uses the presence or absence

of words in a text document as features to represent a document [20]. Considering a feature’s

class term frequency Tctk , if a class c document di in training set has this feature, and it

occurs ti times in di, for Multinomial model, Tctk will be updated as Tctk ← Tctk + ti.

56

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

However, in Bernoulli model, we don’t care about how many times a feature occurs in

a document, what only matters is whether this feature occur or not, so in this case, the

feature tk occurs in document di, so we add binary value 1 to update the Tctk , otherwise add

binary value 0 to update the Tctk . Therefore, Tctk is not longer represent the feature’s class

term frequency, instead, it means the class document frequency. More generally speaking,

Bernoulli model estimate the feature’s conditional probability as the fraction of papers that

contain this feature. The P (c|d) estimation equation is shown as follows:

P (c|d) ∝ P̂ (c)

V∏
k=1

[bkP̂ (tk|c) + (1− bk)(1− P̂ (tk|c))] (15)

Since Bernoulli Model uses presence or absence or words to estimate the probability, the

estimation is different from Multinomial Model. Instead of multiplying by the conditional

probability of each word in the test document, in Bernoulli Model, we need to multiply

each feature’s probability (all features that within the training data set): if a feature tk

appear in the test document, multiply by P̂ (tk|c); if a feature tk not appear in the test

document, multiply by [1 − P̂ (tk|c)], since [1 − P̂ (tk|c)] represent the probability of this

document belong to class c when tk not appear in it. Thus, in the above equation, bk is a

binary value, if word tk occur in test document d, bk = 1, we multiply P̂ (tk|c); otherwise

bk = 0, we multiply [1− P̂ (tk|c)]. Note that when calculating P̂ (tk|c), each distinct tk only

calculate once, regardless of their occurrences in a document.

Another major difference compared with Multinomial Model is the estimation of feature

conditional probability P̂ (tk|c). As can be seen in algorithm 6, the probability is estimated

by the fraction of class document frequency, instead of class term frequency. Moreover, add

one smoothing only need to add 2 into the denominator, since there are only two cases to

consider: occurrence of tk or non-occurrence of tk.

We use the same example in Table 12 to illustrate the training and testing process of

Bernoulli Naive Bayes. First calculate the prior probability as the same with Multinomial

Model: P̂ (CS) =
3

4
. Then, for each word in d5, estimate the word conditional probability

under CS class. Firstly, for the first word Climate, it appears in 0 documents among the

3 CS documents, so we estimate P̂ (Climate|CS) as
0 + 1

3 + 2
=

1

5
. P̂ (Business|CS) also

equals to
1

5
. For the word Data, it appears in all the 3 CS training documents, thus esti-

mate P̂ (Data|CS) as
3 + 1

3 + 2
=

4

5
. Accordingly, P̂ (Computer|CS) = P̂ (Complexity|CS) =

57

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

Algorithm 6 Train Bernoulli NB

Require: Doc set D, classList C
V ← getV ocabulary(D)
N ← countDocs(D)
for each class c ∈ C do
Nc ← countDocsInClass(D, c)

prior[c]← Nc

N
for each each feature t ∈ V do
Nct ← countDFinClass(D, c, t)

condProb[t][c]← (Nct + 1)

(Nc + 2)
end for

end for
Return prior, condProb

Algorithm 7 Test Bernoulli NB

Require: Test doc d, ClassList C, prior, condProb, V
Vd ← getV ocabulary(d)
for each class c ∈ C do
score[c]← log prior[c]
for each each feature t ∈ V do

if t ∈ Vd then
score[c]+ = log condProb[t][c]

else
score[c]+ = log(1− condProb[t][c])

end if
end for

end for
Return arg max

c∈C
score[c]

58

www.manaraa.com

5. CLASSIFICATION SYSTEM METHODOLOGY

P̂ (Software|CS) =
1 + 1

3 + 2
=

2

5
.

Finally the probability of d5 under class CS is estimated as
3

4
· (1

5
)2 · (1 − 2

5
)3 · 4

5
≈

0.0052. Note that three features: Computer, Complexity, Software are absent from the

test document, and both of their probability is
2

5
, thus we multiply (1− 2

5
)3 into P (CS|d5).

Accordingly, the probability of d5 under class nonCS is estimated as
1

4
· (2

3
)2 · (1− 1

3
)3 · 2

3
≈

0.0219. As a result, d5 has been classified as a nonCS paper.

We can see that the classification results for d5 are different when using Multinomial

Model and Bernoulli Model. When using Bernoulli Model, the high occurrence of data

haven’t been considered, and two words Climate and Business provide strong evidence of

nonCS class, thus it lead Bernoulli Model to predict d5 into nonCS class. In the following

chapter, we will use specific experiment to illustrate which model is better for academic

papers.

5.6.4 Logistic Regression

As a comparison, we also applied the Logistic Regression (LR) implemented by Scikit-learn

[25]. Compared with SVM with non-linear kernel, LR provides linear classification solution

and has much faster running speed. Compared with MNB, LR is a discriminative classifier.

Instead of transforming the probability of calculating P (c|d) into P (d|c) as MNB, LR takes a

more straightforward approach that combing features linearly and applying solving functions

to directly calculate the P (c|d). Due to the scalability and efficiency problem, we only apply

LR in sentence2vec modeling as a comparison with MNB since sentence2vec models have

much lower feature dimensionality.

Moreover, we also utilized the SVM with RBF kernel and Decision Tree algorithm

implemented by [25]. However, based on our initial experimental test on smaller arXiv data

set, both SVM and decision tree cannot compete with Logistic Regression, and the running

times for SVM and Decision Tree are much longer than Logistic Regression. Hence, for the

experimental part, we only use Logistic Regression as a comparison with Naive Bayes.

59

www.manaraa.com

CHAPTER 6

Evaluations

6.1 N Fold Cross Validation and F1 Measure

In order to evaluate the classifiers, we need to test each document in our training data set

to compare the predicted class label and their actual true class label. A common evaluation

method is called: cross validation, which means separate the training data set into two parts,

one part is used to train the classifier, while the other part is used to test the classifier. By

saying test, we mean that the trained classifier is used to predict the class label for another

part of the separated data set.

N fold means the data set splitting scheme. We split
N − 1

N
of the data set to be the

training set to train the classifier, use the remaining
1

N
of the data set to be the test set to

obtain the predicted class label by using the classifier trained by the
N − 1

N
of the data set.

As we can see, the training process is a iteration process, in order to obtain the predicted

class label for the whole data set, we need to test each
1

N
part of the data set, in other

words, N classifiers will be trained in order to test different
1

N
fractions of the data set.

Most popular value of N adopted by most of the researchers is 10, which is called: 10

fold cross validation. First, we use [0,
1

10
] part of the data to be the test set, and use [

1

10
,
10

10
]

part of the data to train the classifier. And in the second iteration, use [
1

10
,

2

10
] part of

the data to be the test set, and use [0,
1

10
]
⋃

[
2

10
,
10

10
] part of the data to train the classifier.

Iterate 10 times until all parts of the data have been tested and assigned a predicted class

label. In our real evaluation experiments, we use 10-fold for arXiv data set and 3-fold for

CiteSeerX data set. Based on the cross validation result, TP, TN, FP, FN can be obtained.

TP, True Positive, means the amount of documents that acutual class is True class and

the predicted result is also True class, FN is the amount of documents that actual class is

60

www.manaraa.com

6. EVALUATIONS

True but predicted to be False class, and FP is the amount of documents that actual class

is False but predicted to be True class. F1 measure defines a weighting between recall and

precision. Therefore, higher value of F-measure can ensure the efficiency of the classifier.

If we use the harmonic mean of sensitivity and precision, the formula can be written as

follows. Note that this formula is used for calculate the F1 score for each class (for two-class

classification case, it calculates the True class, which is CS class in our case).

F1 =
2× Precision×Recall
Precision+Recall

Precision =
TP

TP + FN

Recall =
TP

TP + FP

(1)

6.2 Preliminary Study: Classifying conference pa-

pers

In order to launch the initial test of our classification system. We firstly use small amount

of data to test the classifier. Based on the DBLP published venue metadata, we can find

out papers that belong to specific conferences. Based on our observation, there are three

very popular conferences: VLDB, SIGMOD, ICSE which include similar amount of papers.

The details of the three conferences are listed below:

• VLDB: the International Conference on very Large Databases. (2,728 papers iden-

tified based on DBLP venue metadata.)

• SIGMOD: the International Conference on Management of Data. (2,113 papers

identified.)

• ICSE: the International Conference on Software Engineering. (2,245 papers identi-

fied.)

We can also see from Fig. 11 that the paper length distributions among the three

conferences are similar with each other. Both three conferences have top amount of papers

within length with 3000 - 4000 words. Note that the word count is based on the normalized

text (after stop words removal, remove non-English words, etc...). We first classify VLDB

and SIGMOD. Since they are both belong to the topic of database, we consider it is difficult

61

www.manaraa.com

6. EVALUATIONS

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

120

140

Length (Number of Terms)

#
P

a
p
e
rs

ICSE

SIGMOD

VLDB

FIGURE 11: Length Distribution of VLDB, SIGMOD and ICSE Papers

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0.6

0.65

0.7

0.75

0.8

0.85

Number of Features (Log10)

F
1

 V
a
lu

e

BiGram + CHI

BiGram + MI

UniGram + CHI

UniGram + MI

(a)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Features (Log10)

F
1

 V
a
lu

e

BiGram + CHI

BiGram + MI

UniGram + CHI

UniGram + MI

(b)

FIGURE 12: VLDB and SIGMOD Classification Results in Bernoulli (a) and Multi-
nomial (b) Naive Bayes

for the classifier to distinguish papers among these two conferences. By classifying these

two conferences, we can see the ability of the classifier to separate papers with similar

topics. Then, we apply our classifier on VLDB and ICSE. These two conferences are totally

different topics: database and software engineering. The classifier is expected to have

much better classification result compared with classifying VLDB and SIGMOD. Before

the classification experiment, conference specific data in full text need to be removed. We

take a simple approach, cut the head and tailing part of the paper, only keep the middle
1

3
part of the full text.

6.2.1 Classifying VLDB and SIGMOD papers

First we apply feature selection (Mutual Information and χ2) onto VLDB and SIGMOD

papers, and rank the features based on their feature selection scores. Then select different

62

www.manaraa.com

6. EVALUATIONS

Top 20 Features by Mutual Information Top 20 Features by χ2

Feature CDF in VLDB CDF in SIGMOD Feature CDF in VLDB CDF in SIGMOD
mining techniques 4 50 mining techniques 4 50

note used 0 20 tuples input 3 27
tuples input 3 27 note used 0 20
node system 0 19 node system 0 19
since similar 0 17 data store 1 19
map reduce 0 17 since similar 0 17

root operator 0 17 map reduce 0 17
data store 1 19 root operator 0 17

candidate query 3 22 candidate query 3 22
ii one 0 15 section present 219 226

arbitrarily nested 0 15 small fraction 25 50
source queries 0 15 nodes network 2 19
way computing 1 17 way computing 1 17

second one 77 17 ii one 0 15
nodes network 2 19 arbitrarily nested 0 15
section present 219 226 source queries 0 15
small fraction 25 50 equivalence classes 20 43
sorted order 97 26 current value 22 45

clustering results 0 14 clustering algorithm 22 45
hierarchical clustering 0 14 second one 77 17

TABLE 13: Top 20 VLDB and SIGMOD Bi-gram Features Selected in Bernoulli
Naive Bayes (without stemming)

amounts of top ranked features to compare the classification results. As can be seen in

Fig. 12 (a), there are four different curves shown. Under Bernoulli Naive Bayes model,

we experimented with four different combinations of N-gram (Uni-gram and Bi-gram) and

feature selection algorithms (Mutual Information and χ2) to train four different classifiers

to compare their performances. X-axis represents how many features are used. We can

see that both of the four classifiers reach their best classification results when using all

features. And Uni-gram modeling with all features performs the best, the F1 measure

value is 0.846. Table 13 lists the top 20 ranked Bi-gram features by Mutual Information

algorithm and χ2 algorithm. The features we listed are words before stemming, since it

is more human readable. Actually in the actual classification system, all the features are

used after stemming. In the table we can see that although the two conferences are in the

same topic Database, there are still some words that tend to be used more often in only

one specific conference. Papers in SIGMOD have more exclusive and unique features that

can be classified out from VLDB papers, such as ”map reduce”, ”root operator”, ”node

system”, etc...

Fig. 12 (b) shows the classification results when using Multinomial Naive Bayes model.

This time, features are represented by their class term frequencies, instead of class document

frequencies. In Multinomial Model, Bi-gram outperforms Uni-gram modeling throughout

all subsets of ranked features, and χ2 feature selection algorithm performs the best. When

selecting 90,000 top ranked features, the F1 measure value reaches the highest, which is

0.8847. The over fitting problem can also be seen in the figure, when the number of features

63

www.manaraa.com

6. EVALUATIONS

Top 20 Features by Mutual Information Top 20 Features by χ2

Feature CTF in VLDB CTF in SIGMOD Feature CTF in VLDB CTF in SIGMOD
gamma gamma 149 612 gamma gamma 149 612

data mining 229 593 data mining 229 593
aa aa 4 168 aa aa 4 168

edge cover 2 151 edge cover 2 151
world set 2 142 base view 9 164
base view 9 164 world set 2 142

ss tree 2 139 ss tree 2 139
ripple join 1 133 reduced tree 4 140

reduced tree 4 140 ripple join 1 133
dr bones 195 0 bounding rectangles 21 156

mining techniques 6 127 mining techniques 6 127
heavy hitters 2 109 base views 20 154
base views 20 154 isolation levels 27 165

bounding rectangles 21 156 heavy hitters 2 109
pig latin 0 100 pig latin 0 100

support lattice 0 99 support lattice 0 99
isolation levels 27 165 strategy ce 0 96

strategy ce 0 96 vdag strategy 0 95
safe plan 166 0 dr bones 195 0

vdag strategy 0 95 flash memory 2 94

TABLE 14: Top 20 VLDB and SIGMOD Bi-gram Features Selected in Multinomial
Naive Bayes (without stemming)

are too big (more than around 104.5), the classification results stop increasing, instead, if

the number of features used keep growing, the classification results (F1 measure) start to

drop slightly. From Table 14 we can see that the top ranked features in Multinomial Model

is different from Bernoulli Model.

From Fig. 13 we can more easily see the difference between high ranked features and

low ranked features. In the figure, red nodes are the top 100,000 selected features by χ2

algorithm, and the blue nodes are the remaining features. The left figure shows the ranked

features in Bernoulli model, X-axis represents the features’ document frequencies in VLDB

class, and Y-axis represents the features’ document frequencies in SIGMOD class. We can

see that all the red nodes are deviated from y = x. Red nodes have greater differences

of two classes’ document frequencies, which means they are more dependent to only one

specific class instead of commonly appear in both of the classes. Accordingly, in the right

figure which is the ranked features in Multinomial model, X-axis and Y-axis represent the

features’ class term frequencies in VLDB and SIGMOD respectively.We can see that the

parts of the red nodes are even more deviated from y = x, which shows that by using class

term frequency to select features, top ranked features can be separated more evidently.

We also compared the effect of stop words and stemming to classification results. From

Fig. 14 we can see that after performing stemming and stop words removal, the classification

result can indeed reach the highest F1 measure value. Removing stop words can significantly

give a performance boost to the classifier (red and pink curves compared with black and

blue curves). Stemming can further provide a slight performance boost (compared with red

64

www.manaraa.com

6. EVALUATIONS

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

DF in VLDB

D
F

 i
n

 S
IG

M
O

D

Top 100,000 Selected Features

Remaining Features

(a) Bernoulli Model

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

TF in VLDB

T
F

 i
n

 S
IG

M
O

D

Top 100,000 Selected Features

Remaining Features

(b) Multinomial Model

FIGURE 13: Comparison of high score features and low score features

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

Number of Features (Log10)

F
1
 V

a
lu

e

Stemming + Remove Stopwords

Remove Stopwords

Keep Stopwords

Stemming + Keep Stopwords

FIGURE 14: The effect of stop words and stemming to classification results

and pink curves).

6.2.2 Classifying VLDB and ICSE papers

We have already proven that Multinomial Naive Bayes and perform better than Bernoulli

Naive Bayes. Now we change the experiment data set into VLDB (positive class) and ICSE

(negative class) papers and see the capability of the classifier to classify papers from different

topics. Fig. 15 shows the VLDB and ICSE classification results. We can see that Bi-gram

modeling + χ2 algorithm (the red curve) still performs the best. When selecting 600,000

features, the classifier reaches the highest F1 measure value: 0.98534. We can see that

both of the four curves can all maintain at a very high F1 measure value range (all higher

than 0.9), this is because the two different topics (database and software engineering) can

be easily separated. We can also see from Table 15 that the top ranked features are more

dependent with only one specific class. For example, software engineering is clearly tend to

65

www.manaraa.com

6. EVALUATIONS

2.5 3 3.5 4 4.5 5 5.5 6
0.93

0.94

0.95

0.96

0.97

0.98

0.99

Number of Features (Log 10)

F
1
 V

a
lu

e

BiGram + CHI

BiGram + MI

UniGram + CHI

UniGram + MI

FIGURE 15: VLDB and ICSE Classification Results in Multinomial Naive Bayes

Feature CTF in VLDB (N11) CTF in ICSE (N10)

test cases 4 1314
source code 30 1062

software engineering 9 868
test suite 2 709
test case 10 715

software development 4 538
test suites 1 467

control flow 29 494
gamma gamma 131 679
main memory 775 17

join point 0 387
case study 34 396

query processing 555 3
leaf node 564 21

user interface 82 424
lines code 27 310

process model 19 288
development process 5 256

delta delta 469 927
match pcd 0 230

TABLE 15: Top 20 VLDB and ICSE Bi-gram Features Selected in Multinomial Naive
Bayes (without stemming)

66

www.manaraa.com

6. EVALUATIONS

belong to ICSE class, and query processing is clearly tend to belong to VLDB class.

6.3 Classifying arXiv Papers

We separate the arXiv papers into 2 parts, papers labeled with CS are added into the

positive class set, and all the other papers are added into the negative class set.

6.3.1 Experimental Settings

Our experiments mainly separate to two different kinds of text modeling techniques: one

is to extract the Uni-gram and Bi-gram features out from the paper text (title + abstract)

and build the feature set to apply our Naive Bayes classifier. The other experiment is to

use sentence2vec technique to lower down the feature dimensionality. After series tests, we

find the combination of sentence2vec PV-DM model with vector dimension = 100, window

size = 10, negative sample = 5 gives the best embeddings for classification. Thus, we keep

this setup in the following experiments. Compared with N-gram modeling, the feature

dimensionality of sentence2vec is much lower, which is only 100 that make it possible to

apply more complex algorithms such as Logistic Regression.

Our arXiv training set contains 160,000 documents with 80,000 CS and 80,000 non-CS.

Each document contains paper title and abstract. Before the classification experiments, we

tokenize the text of each paper where each token contains only alphanumeric letters, and

each token is also case folded. Furthermore, in order to test the effect of stemming and

removing stop words to the classification results, we conduct our experiments based on the

following four text models:

1. Remove Stopwords (SW)

2. Stemming (ST)

3. Remove Stopwords + Stemming (SW + ST)

4. Original Text (OT)

The four models are the combinations of two control parameters: Remove Stopwords,

Stemming. All of the models can be used to build Uni-gram and Bi-gram feature set, also

67

www.manaraa.com

6. EVALUATIONS

10
0

10
1

10
2

10
3

Length

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
e

rc
e

n
ta

g
e

 o
f

P
a

p
e

rs

CS class
Non-CS class

FIGURE 16: Paper length distribution of arXiv data set

used to build sentence2vec feature set. For the Uni-gram and Bi-gram models, three different

feature weighting schemes are tested and compared: un-normalized, length normalized, fully

normalized (TF-iDF + length normalization). Based on the concept, we mainly summarize

the following three questions that need to be answered:

• Experiment 1: What is the best text models (Impact of stop words and stemming)?

• Experiment 2: What will the size of the training data set affect the classification

results?

• Experiment 3: What will the number of features affect the classification results?

For the first experiment, we use the full data set (160,000 documents) applied with

N-gram and sentence2vec to find out the best text model out from the four different models

SW, ST, SW+ST, OT. For the second experiment, we gradually increase the size of the

training data set while using the whole features. The training data set size increased from

1,000 to 120,000 (9 round experiments in total with 9 different sizes of data set). The

last experiment is changing the number of features. We use χ2, MI and PMI feature

selection algorithms to obtain the score for each feature and rank them based on the score

in descending order. By selecting different top K ranked features, we can compare the

differences of the classification results. Note that feature selection is only for Uni-gram and

Bi-gram features, sentence2vec is not applicable.

Fig. 16 shows the length distribution of arXiv data set, the blue curve is for documents

in CS class, and the red curve is for documents in non-CS class. The value of length is

the number of words in a document after stop words removal. The document count is

68

www.manaraa.com

6. EVALUATIONS

SW ST SW + ST OT

MNB

Avg. Accuracy 0.9079 0.9034 0.9049 0.9018
Avg. Specificity 0.9007 0.8990 0.8953 0.8987
Avg. Precision 0.9021 0.8999 0.8972 0.8992

Avg. Recall 0.9150 0.9077 0.9146 0.9049
Avg. F1 0.9085 0.9038 0.9058 0.9021

Time Consumed 0:01:38 0:01:37 0:01:37 0:01:38

LR

Avg. Accuracy 0.9292 0.9259 0.9266 0.9260
Avg. Specificity 0.9265 0.9222 0.9237 0.9231
Avg. Precision 0.9269 0.9228 0.9241 0.9035

Avg. Recall 0.9318 0.9295 0.9295 0.9290
Avg. F1 0.9293 0.9261 0.9268 0.9262

Time Consumed 0:03:49 0:03:51 0:03:47 0:03:48

TABLE 16: Classification Results Comparison by using sentence2vec 100D features
on 160,000 balanced arXiv data set

based on length range 30, which means the lengths between [30n, 30(n+ 1)] are group and

count together. Lengths are normalized into b L
30
c × 30. We can see from Fig 16 that the

length distribution of CS and non-CS documents are almost the same. For CS class, most

documents are centralized into length range of 60-90, while non-CS class centralized the

most in 90-120.

6.3.2 Impact of stop words and stemming

All the experiments in Table 16 on the four different text models are based on 100 di-

mension features sentence2vec. Two algorithms are used: Multinomial Naive Bayes and

Logistic Regression. Table 16 shows the classification results of different text models, the

precision, recall and F1 measure are evaluated by using 10 fold cross validation scheme, and

the average score is calculated by 10 sub-scores created by 10 fold. We can see that for

all the experiments, Logistic Regression outperforms Multinomial Naive Bayes with more

than 2% F1 measure value. If measured by Logistic Regression, the rank of the four text

models should be: SW > SW + ST > ST > OT . The two models that retain the stop

words perform the worst, and stemming lower down the performance a little bit. Since

sentence2vec rely on the context to analyze the text, stemming may damage part of the

context in a document. As a conclusion, removing stop words improves the classification

accuracy in all the methods, even in sentence2vec, while stemming has limited impact to

the improvement. Moreover, we can also see from Table 16 that precision and recall are all

69

www.manaraa.com

6. EVALUATIONS

SW ST SW + ST OT

sentence2vec 0.9085 0.9038 0.9058 0.9021

Uni-gram

Un-NL 0.9326 0.9293 0.9289 0.9288

Len NL 0.9324 0.9289 0.9286 0.9280

Full NL 0.9354 0.9317 0.9314 0.9312

Bi-gram

Un-NL 0.9460 0.9425 0.9440 0.9424

Len NL 0.9469 0.9435 0.9447 0.9433

Full NL 0.9467 0.9449 0.9448 0.9444

TABLE 17: Multinomial Naive Bayes F1 measure comparison on 160,000 balanced
arXiv data set

in a high level, which shows that FP (False Positive) is as low as FN (False Negative).

Table 17 shows the F1 measure comparison between sentence2vec method and N-gram

methods under Multinomial Naive Bayes. We can see that for all the four models, both

Uni-gram and Bi-gram surpass sentence2vec method, and SW model always performs the

best. When using SW model and Bi-gram with length normalized feature weight, the

classification performance is the best where the F1 measure reaches 0.9469. However, we

can see that except the Bi-gram SW model, all the other models, no matter Uni-gram or

Bi-gram, full normalized feature weight has the best performance, even though in Bi-Gram

SW, Len NL only has very tiny gap with Full NL (0.0002) which can be ignored. In general,

for Uni-gram, the feature weight performance ranking is FullNL > Un − NL > LenNL,

and for Bi-gram, the feature weight performance ranking is FullNL > LenNL > Un−NL.

Length normalization didn’t bring too much improvement which is because that the length

of abstract + title in papers of arXiv data set has similar length, not like CiteSeerX data

set. However, full normalization can improve the classification results by adding TF-iDF

weighting.

Another important measurement is the classification program run time. We know that

Naive Bayes is the fastest and simplest classification algorithm compared with other more

advanced algorithm such as Logistic Regression. Based on the experimental results, we

can see that indeed Naive Bayes has the highest efficiency, for 10 fold cross validation and

160,000 papers, it only took around 1 and half minutes to finish the classification task, while

Logistic Regression took around 3 - 4 minutes.

70

www.manaraa.com

6. EVALUATIONS

10
3

10
4

10
5

10
6

Tranining data size

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

F
1

(A)

Unigram
Bigram
s2v MNB
s2v LR

10
3

10
4

10
5

10
6

Tranining data size

0.86

0.88

0.9

0.92

0.94

F
1

(B)

Unigram
unigram length normalized
unigram full normalized
Bigram
bigram length normalized
Bigram full normalized

FIGURE 17: Impact of training data size on F1. (A) Both Uni-gram and Bi-gram
model out-perform sentence2vec when training data is large; (B) Normalization plays
a minor role in this data.

6.3.3 Impact of Training Set Size

We randomly sampled 9 different training sets with different sizes. Size varies from 1,000 to

160,000. Within each sampled training set, the number of CS documents and non-CS docu-

ments are equal to make the data set balanced. In each round, there are 6 sub-experiments

with 8 different classification systems: (1, 2) sentence2vec + Multinomial Naive Bayes / Lo-

gistic Regression, (3, 4, 5) Uni-gram (un-normalized / length normalized / fully normalized)

+ Multinomial Naive Bayes, (6, 7, 8) Bi-gram (un-normalized / length normalized / fully

normalized) + Multinomial Naive Bayes. For Uni-gram and Bi-gram, un-normalized feature

weight use the features’ TF (term frequency) as feature values to do the classification.

Fig. 17 shows the comprehensive classification result curves for the 8 different classi-

fication systems. The 9 nodes along the curves is the F1 measure value with 9 different

training set sizes. From Fig. 17 (A) we can clearly see that from the beginning the classifi-

cation results increase fiercely until the size reaches around 2 × 104. Ignore some outliers,

we can see that even if the training set size keep increasing, the classification results still

slowly become better. Almost for all of the 6 systems, the classification results reach the

best when the training set size reaches the largest value 160,000. We can see that at the

beginning when training set size is 1,000, the Bi-gram model performs the worst, while the

Uni-gram model performs the best. An interesting phenomenon is that when training set

size increase, Bi-gram model surpass all the other systems quickly and become the best

performer. As a comparison, Uni-gram model and the two sentence2vec models fluctuate

71

www.manaraa.com

6. EVALUATIONS

2 3 4 5 6

Tranining Set Size

0.75

0.8

0.85

0.9

0.95

1

F
1
 M

e
a
s
u
re

(A)

2 3 4 5 6

Tranining Set Size

0.75

0.8

0.85

0.9

0.95

1

F
1
 M

e
a
s
u
re

(B)

2 3 4 5 6

Tranining Set Size

0.8

0.85

0.9

0.95

1

F
1
 M

e
a
s
u
re

(C)

2 3 4 5 6

Tranining Set Size

0.75

0.8

0.85

0.9

0.95

1

F
1
 M

e
a
s
u
re

(D)

FIGURE 18: Error bar plot of (A) sentence2vec Multinomial Naive Bayes; (B) sen-
tence2vec Logistic Regression; (C) Uni-gram full normalized; (D)Bi-gram full nor-
malized

less than Bi-gram model, and sentence2vec models perform always slightly worse than Uni-

gram model. Moreover, for Logistic Regression and Multinomial Naive Bayes algorithms

applied in sentence2vec model, at first Multinomial Naive Bayes performs better than Lo-

gistic Regression, however, Logistic Regression quickly surpass Multinomial Naive Bayes

and the performance gap become increasingly bigger.

17 (B) shows more details of 6 different N-gram models, mainly shows the effect to the

classification results of the two feature weight normalization methods. We can see that for

both the Uni-gram and Bi-gram, when the training set is large enough, fully normalized

feature weight can have slightly better performances. For Uni-gram models, fully normalized

first performs the worst, but with the increase of the training set size, it turn out to be the

best performer within all Uni-gram models.

Fig. 18 shows the differences of minimum F1 value and maximum F1 value with the

increase of the training set size, we can see that for both the four models showed in the four

plots, the variance range become smaller when training set size increase. Compared with

(A) (B), Multinomial Naive Bayes has smaller gap between max F1 and min F1.

Table 18 also lists the statistics of average F1 measure values corresponding to Fig. 17.

72

www.manaraa.com

6. EVALUATIONS

Training Size = 1,000 Training Size = 160,000

MNB LR MNB LR

sentence2vec 0.8848 0.8821 0.9085 0.9293

Uni-gram

Un-NL 0.9148 - 0.9326 -

Len NL 0.9206 - 0.9324 -

Full NL 0.9054 - 0.9354 -

Bi-gram

Un-NL 0.8653 - 0.9460 -

Len NL 0.8985 - 0.9469 -

Full NL 0.8671 - 0.9467 -

TABLE 18: Statistics of Classification Results with the increase of training set size

Uni-gram Bi-gram

MI & χ2 0.97984 0.97011
χ2 & PMI 0.62230 0.74242
MI & PMI 0.61009 0.71542

TABLE 19: Spearman Correlation between top 1000 MI, PMI and χ2 selected features

6.3.4 Impact of feature size

The whole training data set (160,000 papers) contains 149,731 different Uni-grams and

5,200,488 different Bi-grams. Although the N-gram feature dimensionality is much larger

than sentence2vec, the N-gram feature set is usually a sparse matrix, which means each

paper only has very tiny portion of the whole feature set (tiny portion of words appear in

the same paper), which make Multinomial Naive Bayes possible to deal with such cases.

We used three different feature selection algorithms: MI, PMI and χ2 to compare the

differences. From Table 19 we can see that the feature ranks based on scores in an descending

order under MI and χ2 are very similar, while PMI is different from MI and χ2. Both

MI and χ2 tend to select popular words with higher scores, and PMI tend to select very

exclusive words. Since during the preliminary experiment of VLDB, SIGMOD and ICSE

classification, we proved that χ2 performs slightly better than MI (although they have almost

the same performances), in the sections below, we will analyze the differences between χ2

and PMI.

Analysis of top ranked features by χ2

In Table 20, we list the top scored Uni-gram and Bi-gram features using χ2 feature selection

algorithm. For the features that have higher CTF in CS, we bold and use red color to

73

www.manaraa.com

6. EVALUATIONS

Uni-gram Bi-gram

Name CTF in

CS

CTF in

non-CS

CDF in

CS

CDF in

non-CS

Name CTF in

CS

CTF in

non-CS

CDF in

CS

CDF in

non-CS

quantum 2856 24576 871 9933 magnetic field 28 2924 13 1738

algorithm 41238 4843 19204 2669 state art 4422 279 4005 268

field 4523 20706 3309 11714 field theory 46 2204 37 1575

network 31142 4014 13213 1809 two dimensional 679 3150 525 2433

performance 23800 2081 14981 1613 log n 3705 262 1858 181

algorithms 23178 2032 12952 1275 polynomial time 3364 156 2409 119

based 47442 12647 29280 10206 x ray 65 1781 45 809

spin 248 10336 134 4011 paper propose 3348 234 3344 234

0 5897 19455 3643 8987 ground state 10 1515 8 1104

equation 1193 11352 790 6531 o n 3631 441 1933 292

information 28191 4953 15016 3224 black hole 68 1492 23 768

networks 25829 4076 12044 1607 boundary conditions 94 1483 70 1046

learning 16895 965 7206 467 real world 2849 244 2470 218

problem 40677 11110 21870 7272 su 2 2 1223 2 769

magnetic 247 8610 178 3925 phase transition 247 1733 158 1161

theory 9177 22542 6141 13581 cross section 25 1247 21 854

user 13107 242 6828 166 one dimensional 404 1993 327 1606

mass 511 8547 369 4777 paper presents 3072 366 3040 364

channel 17799 1890 6802 1124 yang mills 0 1151 0 686

equations 2026 11147 1289 6497 sensor networks 1922 14 1160 11

data 42199 13137 18081 7917 real time 2798 303 1747 228

paper 45105 14926 39094 13182 perturbation theory 13 1121 12 855

users 11392 202 5956 131 standard model 66 1232 59 886

x 5721 16323 1812 5437 phase space 37 1165 28 794

proposed 24313 5188 16596 4409 quantum mechanics 86 1264 72 875

temperature 605 7687 309 4470 wireless networks 1768 12 1238 6

complexity 15063 1529 8902 934 low energy 91 1238 76 980

codes 12805 779 3794 345 results show 3790 777 3737 766

2 19117 32629 10078 15936 network coding 1721 7 750 4

gauge 45 6069 37 3025 wireless sensor 1647 5 943 4

phase 3265 12005 1715 6261 cross sections 15 1005 11 685

electron 111 6124 66 3183 ad hoc 1936 96 1154 89

states 2775 11167 1931 6264 e e 106 1202 80 716

dimensional 4830 14118 3123 9573 neural networks 2139 176 1383 116

wireless 9540 83 4863 48 gauge theory 3 948 2 686

wave 599 6904 342 3937 paper present 2894 464 2888 464

particle 659 6536 370 3916 machine learning 2061 154 1563 116

graph 16001 2774 6798 1403 neural network 1921 109 1274 83

lattice 1581 8111 734 4415 monte carlo 840 2351 651 1755

surface 1137 7246 645 4033 three dimensional 375 1631 286 1259

1 22542 33914 10719 16236 lie algebra 16 935 6 641

algebras 547 6046 313 2709 simulation results 2318 272 2266 258

group 4162 11975 2199 6610 mean field 231 1368 128 959

particles 246 5309 147 3152 bose einstein 10 909 5 583

scattering 282 5303 147 3002 electric field 14 913 11 617

design 13082 1904 8389 1333 time dependent 192 1256 141 945

dynamics 2843 9737 1754 6082 1 2 1745 3442 1231 2423

distributed 10819 1096 5953 843 np hard 1648 69 1389 61

communication 10083 867 5953 561 density functional 4 851 3 655

quark 5 4360 3 2202 black holes 7 856 6 478

coupling 612 5640 405 3628 moduli space 3 845 3 537

symmetry 615 5641 345 3632 multiple access 1433 10 962 9

coding 8151 320 3580 186 angular momentum 3 841 2 542

density 2822 9389 1864 5689 lattice qcd 13 857 8 592

software 8466 440 3977 301 worst case 1662 92 1202 73

nodes 9921 936 5002 543 phys rev 9 828 8 734

image 10622 1221 4119 829 proposed algorithm 1649 100 1327 85

optimal 15816 3350 9162 2042 u 1 19 833 14 540

algebra 1559 7243 942 3724 time algorithm 1505 57 1200 50

transition 1524 7044 1021 4155 lie algebras 7 800 2 471

access 7687 306 4589 265 mathbb r 465 1637 293 893

language 8240 522 4459 373 good agreement 40 871 40 851

logic 8315 567 3560 299 long range 151 1096 101 776

qcd 20 3916 10 2159 n log 1583 90 954 72

capacity 8606 690 3876 409 channel state 1302 8 1082 8

web 7142 246 2910 149 correlation functions 4 770 4 581

efficient 11996 2050 9259 1723 computational complexity 1645 122 1427 106

propose 15135 3433 13411 3244 renormalization group 5 761 2 564

limit 1668 6913 1345 5012 o log 1525 83 950 62

boundary 1222 6116 715 3465 experimental data 176 1117 160 1012

TABLE 20: Top 70 Uni-gram and Bi-gram arXiv Features Selected by χ2 (features
with higher CTF in CS are highlighted with red color)

74

www.manaraa.com

6. EVALUATIONS

highlight the text to make them more clearly to be seen. It can be seen that the top

selected features are clearly related to CS or non-CS subjects, such as network, algorithm,

codes, machine learning should more related to CS areas, while quantum, magnetic, spin,

black hole should more related to non-CS areas. We can see that although the top scored

features appear lots of time in both classes, their class term frequency can still differs

greatly. For example, ”algorithm”, as the second ranked Uni-gram feature, appears lots of

times in both classes, but still have predominant term frequency in CS class which can still

be a good proof of CS class if a document has word ”algorithm”. Accordingly, the first

ranked Uni-gram feature ”quantum” is obviously a Physics word. Although it also occur

2,856 times in CS documents, but it occur 10 times more in non-CS documents. As for

the Bi-gram ranked feature list, the top ranked features are more deviated to one certain

class compared with Uni-gram features. For example, ”magnetic field” as the first ranked

feature only occur 28 times in CS documents, while ”multiple access” occurs 1433 times in

CS documents and only 10 times in non-CS documents which can be a strong evidence of

being in CS class. We can also see from Table 20 that the ratio of CS features and non-CS

features tend to be equal, which proves that both classes have adequate amount of popular

but still distinguishable features. In addition, for another feature selection algorithm Mutual

Information, the scored result is very similar with χ2, thus we don’t list the features selected

by Mutual Information here.

Analysis of top ranked features by PMI

However, another feature selection algorithm: Pointwise Mutual Information (PMI), tend

to score smaller (unpopular but more exclusive) features to the top; in other words, under

PMI, a top ranked word could only appear in one class but hardly appear in the other

class. Table 21 shows the top 70 scored Uni-gram and Bi-gram features using PMI. We

can clearly see the differences of the top scored features using the two algorithms, almost

all of the top features totally biased to only one class. Compared with χ2 algorithm, some

of the top scored features maybe not so popularly used, but are exclusively used by only

one class of papers. Overall, top features selected by χ2 can be more meaningful words,

while PMI may highly scored some strange words. Since under PMI, most of the popular

words are ranked as lower position, select too few amount of features may seriously lower

the classification accuracy. We can see from Table 21 that the top selected features are

75

www.manaraa.com

6. EVALUATIONS

Uni-gram Bi-gram

Name CTF in

CS

CTF in

non-CS

CDF in

CS

CDF in

non-CS

Name CTF in

CS

CTF in

non-CS

CDF in

CS

CDF in

non-CS

supersymmetric 0 1828 0 1121 yang mills 0 1151 0 686

mev 0 1586 0 925 gauge theories 0 714 0 486

chiral 1 3074 1 1525 su 3 0 680 0 419

pion 0 1161 0 658 non perturbative 0 636 0 497

supersymmetry 0 1035 0 623 spin orbit 0 621 0 345

branes 0 1003 0 465 sum rate 946 0 494 0

mesons 0 948 0 603 quantum gravity 0 554 0 347

hadronic 0 921 0 661 heavy quark 0 547 0 341

phonon 0 883 0 428 quantum hall 0 518 0 288

baryon 0 879 0 503 mills theory 0 506 0 347

beamforming 1439 0 616 0 k ahler 0 503 0 265

nucleon 1 1683 1 835 chern simons 0 486 0 274

fermions 1 1602 1 1052 chiral symmetry 0 478 0 330

quark 5 4360 3 2202 de sitter 0 448 0 252

electroweak 0 703 0 442 cp violation 0 439 0 256

supergravity 0 694 0 390 rev lett 0 437 0 406

lepton 0 655 0 451 energy momentum 0 433 0 274

gluon 1 1301 1 748 cosmological constant 0 426 0 276

fermionic 0 607 0 441 moduli spaces 0 421 0 291

quarks 1 1182 1 840 au collisions 0 420 0 232

parton 0 583 0 372 c algebra 0 416 0 258

superfluid 0 574 0 298 su 2 2 1223 2 769

precoding 949 0 388 0 mimo systems 680 0 417 0

condensate 1 1134 1 654 outage probability 679 0 430 0

ionization 0 564 0 317 gev c 0 403 0 264

ahler 0 552 0 291 transverse momentum 0 402 0 301

singlet 0 545 0 362 coupling constant 0 402 0 345

multicast 891 0 370 0 access control 665 0 413 0

meson 2 1563 1 929 logic programs 665 0 349 0

gev 4 2544 3 1399 collisions sqrt 0 386 0 257

cnn 842 0 359 0 gauge invariant 0 378 0 289

kev 0 488 0 285 hall effect 0 363 0 236

colliders 0 467 0 311 quark masses 0 359 0 279

p2p 764 0 306 0 sigma model 0 353 0 250

fermion 2 1293 2 814 ieee 802 590 0 342 0

chern 1 860 1 504 interference alignment 580 0 284 0

qos 1431 1 643 1 chiral perturbation 0 346 0 248

orbifold 0 426 0 259 conformal field 0 342 0 254

csit 685 0 198 0 200 gev 0 337 0 218

yukawa 0 393 0 243 gauge field 0 336 0 266

quenched 1 777 1 549 massive mimo 561 0 254 0

massless 1 768 1 583 beta decay 0 332 0 177

downlink 1255 1 723 1 full duplex 533 0 229 0

exciton 0 373 0 182 deep inelastic 0 318 0 237

protons 0 371 0 267 top quark 0 316 0 186

ultracold 0 362 0 221 relay channel 517 0 287 0

galactic 1 720 1 425 dirac operator 0 305 0 209

hyperfine 0 350 0 202 power allocation 999 1 496 1

nonperturbative 0 349 0 281 mobile ad 498 0 328 0

isospin 0 344 0 224 magnetic moment 0 292 0 201

pseudoscalar 0 330 0 243 quark mass 1 584 1 414

helicity 0 329 0 201 dimensional electron 0 291 0 218

dilaton 0 328 0 187 non relativistic 0 291 0 244

baryons 0 325 0 209 decode forward 486 0 344 0

brst 0 321 0 158 inelastic scattering 0 289 0 232

tev 1 628 1 393 information csi 484 0 481 0

majorana 0 308 0 169 interference channel 966 1 521 1

hubbard 0 308 0 196 excited states 0 286 0 244

mssm 0 306 0 174 sqrt s 0 279 0 162

polyakov 0 301 0 178 gauge fields 0 276 0 218

hubble 0 301 0 201 al phys 0 272 0 245

pions 0 300 0 222 transport properties 0 271 0 231

photoproduction 0 295 0 171 pb pb 0 265 0 143

magnetoresistance 0 292 0 177 j psi 1 525 1 208

deuteron 0 289 0 159 effective potential 0 261 0 187

condensates 1 579 1 366 pb collisions 0 259 0 138

mills 3 1159 1 692 electric dipole 0 257 0 168

rhic 1 568 1 341 integrable systems 0 254 0 192

floer 0 281 0 128 802 11 421 0 225 0

uplink 913 1 499 1 spin polarization 0 246 0 149

TABLE 21: Top 70 Uni-gram and Bi-gram arXiv Features Selected by PMI (features
with higher CTF in CS are highlighted with red color)

76

www.manaraa.com

6. EVALUATIONS

very exclusive, for example: ”p2p” occurs 764 times in CS documents and 0 times in non-

CS documents, and ”mimo systems” occurs 680 times in CS documents and also 0 times

in non-CS documents. Such words maybe quite popular within a small range of research

groups; however, it is inappropriate to represent the common words of whole CS research

areas. Therefore, by using PMI, enough amount of features must be included to ensure the

classification accuracy. Moreover, the top ranked features under PMI are almost all belong

to non-CS class, while top CS features ranked much lower than non-CS features. This is

because non-CS papers have more highly occurred exclusive words.

10
0

10
5

CTF in CS

10
0

10
5

C
T

F
 i
n
 n

o
n
-C

S

(A)

Top 3000
Remaining

10
0

10
5

CTF in CS

10
0

10
5

C
T

F
 i
n
 n

o
n
-C

S

(B)

Top 3000
Remaining

10
0

10
2

10
4

CTF in CS

10
0

10
1

10
2

10
3

10
4

C
T

F
 i
n
 n

o
n
-C

S

(C)

Top 3000
Remaining

10
0

10
2

10
4

CTF in CS

10
0

10
1

10
2

10
3

10
4

C
T

F
 i
n
 n

o
n
-C

S

(D)

Top 3000
Remaining

FIGURE 19: Top features selected by different methods. Panel (A) and (C): χ2; (B)
and (D): PMI. (A) and (B) are Uni-gram models; (C) and (D) are Bi-gram models.

Feature Distribution

In Fig. 19 we can clearly see the plotted top ranked few features are all bias in only one

specific class, either CS or non-CS. X-axis represents the CTF (Class Term Frequency) in

CS class, Y-axis represents the CTF in non-CS class. In Fig. 19, red nodes represent the

top 3,000 ranked Uni-gram features, and the blue nodes are all the remaining features. We

can see that all of the red nodes are deviated from y = x, which means the CTF in one

class are significantly larger than the other class. Form Fig. 19 we can also see that χ2 tend

to select big/popular words have high total occurrences but still have significant different

77

www.manaraa.com

6. EVALUATIONS

2 2.5 3 3.5 4 4.5 5

CTF in CS

2.5

3

3.5

4

4.5

C
T

F
 i
n
 n

o
n
-C

S

(A)

quantum

algorithm

field

network

performancealgorithms

based
spin

0

equation

information
networks

learning

problem

magnetic

theory

user

mass

channel

equations
data
paper

users

x

proposed

temperature

complexity

codes

2

gauge

200 400 600 800 1000 1200 1400 1600 1800 2000

CTF in CS

200

400

600

800

1000

1200

1400

1600

1800

2000

C
T

F
 i
n
 n

o
n
-C

S

(B)

supersymmetric

mev

pion

supersymmetrybranes
mesonshadronic
phononbaryon

beamforming

nucleon
fermions

electroweaksupergravity
lepton

gluon

fermionic

quarks

partonsuperfluid

precoding

condensate

ionizationahlersinglet

multicast

meson

1.5 2 2.5 3 3.5 4

CTF in CS

1

1.5

2

2.5

3

3.5

C
T

F
 i
n
 n

o
n
-C

S

(C)
magnetic field

state art

field theory

two dimensional

log n

polynomial time

x ray

paper propose

ground state

o n

black holeboundary conditions

real world

su 2

phase transition

cross section

one dimensional

paper presents

sensor networks

real time

perturbation theory standard modelphase space quantum mechanics

wireless networks

low energy

results show

network coding

wireless sensor

200 400 600 800 1000 1200 1400

CTF in CS

100

200

300

400

500

600

700

800

C
T

F
 i
n
 n

o
n
-C

S

(D)

yang mills

gauge theories

su 3

non perturbative
spin orbit

sum rate

quantum gravityheavy quark
quantum hallmills theoryk ahler
chern simonschiral symmetry
de sittercp violationrev lettenergy momentumcosmological constantmoduli spacesau collisionsc algebra

su 2

mimo systemsoutage probability

gev ctransverse momentumcoupling constant

access controllogic programs

collisions sqrt

FIGURE 20: The name of the top 30 features selected by different methods. Panel
(A) and (C): χ2; (B) and (D): PMI. (A) and (B) are Uni-gram models; (C) and (D)
are Bi-gram models.

occurrences in the two classes while PMI tend to select words that CTF in other class is

almost 0. Fig. 20 shows the CTF distribution of the name of the top 30 features. For panel

(A) and (C) we log the axis in order to see the text more clearly. We can see that for PMI

algorithm, all the top features are attached to the X-axis or Y-axis that shows 0 CTF in

other class.

Experiment Results

Fig. 21 shows the classification results when using three different kinds of feature selection

algorithms: PMI, MI and χ2. For each algorithms, we use Bi-gram, Uni-gram respectively,

and also use the three different feature weighting schemes: length / fully normalized feature

weight and original Class Term Frequency as feature weight (six models in total). We can

see that when using less amount of features, the classification results of using PMI drop

significantly compared with χ2 and MI. However, for un-normalized Uni-gram features,

from Fig. 21 (A) we can see that when using more than top 30,000 Uni-gram features,

actually the classification results are better than using all features, and also more features

can let PMI performs better than χ2 for all the six models; and using original class term

78

www.manaraa.com

6. EVALUATIONS

10
2

10
4

10
6

Feature size

0.5

0.6

0.7

0.8

0.9

F
1

(A) unigram

CHI Square
MI
PMI

10
4

10
5

Feature size

0.91

0.915

0.92

0.925

0.93

F
1

Closeup of (A)

CHI Square
MI
PMI

10
2

10
4

10
6

Feature size

0.6

0.65

0.7

0.75

0.8

0.85

0.9

F
1

(B) unigram length normalized

CHI Square
MI
PMI

10
4

10
5

Feature size

0.928

0.929

0.93

0.931

0.932
F

1

Closeup of B

CHI Square
MI
PMI

10
2

10
4

10
6

Feature size

0.6

0.65

0.7

0.75

0.8

0.85

0.9

F
1

(C) unigram fully normalized

CHI Square
MI
PMI

10
4

10
5

Feature size

0.931

0.932

0.933

0.934

0.935

F
1

Closeup of C

CHI Square
MI
PMI

10
2

10
4

10
6

10
8

Feature size

0.5

0.6

0.7

0.8

0.9

F
1

(D) bi-gram

CHI Square
MI
PMI

10
5

10
6

Feature size

0.92

0.925

0.93

0.935

0.94

0.945

F
1

Closeup of D

CHI Square
MI
PMI

10
2

10
4

10
6

10
8

Feature size

0.5

0.6

0.7

0.8

0.9

F
1

(E) bigram length normalized

CHI Square
MI
PMI

10
5

10
6

Feature size

0.934

0.936

0.938

0.94

0.942

0.944

0.946

F
1

Closeup of E

CHI Square
MI
PMI

10
2

10
4

10
6

10
8

Feature size

0.6

0.7

0.8

0.9

F
1

(F) bigram normalized

CHI Square
MI
PMI

10
5

10
6

Feature size

0.934

0.936

0.938

0.94

0.942

0.944

0.946

F
1

Closeup of F

CHI Square
MI
PMI

FIGURE 21: Impact of feature size for Uni-gram and Bi-gram models, with combi-
nation of text normalization. (A) Uni-gram; (B) Uni-gram length normalized; (C)
Uni-gram fully normalized; (D) Bi-gram; (E) Bi-gram length normalized; (F) Bi-gram
fully normalized.

79

www.manaraa.com

6. EVALUATIONS

frequency as feature weight perform worse than normalized feature weight. Compared with

(B) Length normalization and (C) full normalization, we can see that after normalization,

PMI increase faster, and before the feature size reaches 104, PMI has already surpass MI

and χ2.

Fig. 21 (D) (E) (F) shows the Bi-gram classification results. both PMI, MI and χ2

reaches the best classification results when using all features. When gradually decreasing

features, firstly χ2 and MI drops lower than PMI, but then PMI drops below χ2 and MI.

We can see from all the eight plots that MI and χ2 can always perform at almost the

totally same F1 measure levels, while PMI differs greatly with MI and χ2. In addition, for

Bi-gram features, an interesting phenomenon is that from feature size 106 to all features

(5.2 millions), both the F1 measure of un-normalized and normalized models first drop then

increase greatly to the highest values with all features. The final increasing trend is caused

by the increasing of TN (True Negative) value that pull the classification precision higher.

6.3.5 Observation to the Naive Bayes Classification Result

(a) (b)

FIGURE 22: Naive Bayes Classification Probability Distributions: Uni-gram (a) and
Bi-gram (b)

Fig. 22 shows the Multinomial Naive Bayes classification probability distributions. In

Fig. 22 (a) (b), each node represent a paper, the X-axis is the probability score of class

CS and the Y-axis is the probability score of class non-CS. If the value in X-axis is larger

than the value in Y-axis, the paper will be classified as CS class. The blue nodes in these

two plots represent the correctly classified papers, and red nodes represent the wrongly

80

www.manaraa.com

6. EVALUATIONS

classified papers. We can see that all of the wrongly classified papers are more centralized

to the line y = x, which means the probability of being in the two classes are quite similar.

Accordingly, if a paper is more deviated from y = x, it will has smaller chance to be wrongly

classified.

6.4 Classifying CiteSeerX papers

In this section, we will use the paper full text in CiteSeerX data set to further test our clas-

sifier. The total CiteSeerX data set contains 2.1 million papers, there are around 600,000

CS papers based on the matched result with DBLP. We also make the training data set bal-

anced by sampling 600,000 CS papers and 600,000 non-CS papers. The size of the training

set is almost 8 times larger than arXiv data set, and the text content in each CiteSeerX

paper is the whole original text, which is also much longer than document length in arXiv

(title + abstract) data set. Due to the huge size of CiteSeerX data set, we only use the

best proved models to conduct the following experiments. So far our experiments have

proved that Multinomial Naive Bayes performs better than Bernoulli Naive Bayes for aca-

demic papers, and N-gram (Uni-gram, Bi-gram) models performs better than sentence2vec

models when the training set size is large. Therefore, for CiteSeerX, we only use N-gram

models and Multinomial Naive Bayes to test the classification accuracy. In all CiteSeerX

experiments, we use 3-fold cross validation to evaluate classifiers.

6.4.1 Experimental Settings

The text complexity of papers in CiteSeerX data set is much higher than papers in arXiv

data set, first is because CiteSeerX papers contain the every part of the full original text

which can include huge amounts of different words / strange words into the vocabulary;

second is the cleaning and accuracy level of the full text in CiteSeerX is lower than arXiv

because the full text in CiteSeerX data set is automatically parsed from the original PDF

files, and due to the complexity and variations of PDF files the parsing may not reliable.

Based on the fact, we use the NLTK regular expression tokenizer to tokenize and lower

case the text in each paper in CiteSeerX data set by only keeping English letters. The

regular expression we used is \b[A− Za− z] + \b. As for stop words and stemming, in the

arXiv classification experiments, we have already proved that keep stop words will lower

81

www.manaraa.com

6. EVALUATIONS

10
0

10
2

10
4

10
6

10
8

Length

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
e

rc
e

n
ta

g
e

 o
f

P
a

p
e

rs

(A)

CS class
Non-CS class

2000 4000 6000 8000 10000

Length

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
e

rc
e

n
ta

g
e

 o
f

P
a

p
e

rs

(B)

CS class
Non-CS class

2 4 6 8 10

Length
×10

4

0

1

2

3

4

5

6

7

P
e

rc
e

n
ta

g
e

 o
f

P
a

p
e

rs

×10
-3 (C)

CS class
Non-CS class

FIGURE 23: Paper length distribution of CiteSeerX data set: (A) total distribution
in loglog plot; (B) distribution in lower range; (C) distribution in higher range

the classification accuracy, and stemming didn’t cause too much effect to the classification

accuracy. Therefore, in this section, we only test with the text model that after stemming

and stop words removal, since stemming can lower the vocabulary size that decrease the

classification time and space complexity. After the text pre-processing, our CiteSeerX

classification experiment will mainly separate into the following two parts:

• Impact of training size: Gradually increase the training set size to compare the clas-

sification results (use full features).

• Impact of feature size: Applied different feature selection algorithms on the full data

set and select different highly ranked amount of features to compare the classification

results.

Each experiment is tested by the Multinomial Naive Bayes classification algorithm with

Uni-gram and Bi-gram model. Also, both un-normalized and normalized feature weight

are tested. For feature selection algorithms, as we already showed that χ2 performs quite

similar with Mutual Information and overall χ2 can achieve better performance than Mu-

tual Information. Thus we don’t use Mutual Information in this section. However, as a

comparison, we still use pointwise mutual information (PMI) to test the impact of feature

sizes to the classification results. We use two powerful servers with 24 core CPU and 256GB

memory to run the CiteSeerX classification experiments.

Fig 23 shows the length distribution of CiteSeerX data set, the blue curve is for papers

in CS class, and the red curve is for papers in non-CS class. The value of length is the

number of words in a papers after stop words removal. The count is based on length range

82

www.manaraa.com

6. EVALUATIONS

500, which means the lengths between [500n, 500(n + 1)] are group and count together.

Compared with arXiv data set, CiteSeerX average document length are much larger. There

are even papers longer than 106, and lengths of different papers varies greatly. We can also

see from Fig 16 that non-CS papers tend to be longer than CS papers. Fig 16 (B) shows

the length distribution on smaller value ranges. In most of the ranges, the number of CS

papers are more than non-CS papers, however, in larger length ranges, non-CS papers are

more than CS papers.

6.4.2 Impact of Training Set Size

In this section, we aim to find out the effect of the training set size to the classification

results. In the previous arXiv experiments, we conclude that with the increasing of the

training set size, the classification results (measured by F1) indeed increase, but the in-

creasing trend gradually become slower, similar with y = log x, at first the classification

results increased very fast, and then gradually slow down. We need to find out whether this

increasing trend can also be applied to the CiteSeerX data set.

Deal with huge sizes

We randomly sampled 13 different training sets with different sizes. The training set varies

from 1,000 papers up to the full set 1,200,000 papers. The increasing of the training set

size accord with exponential growth trend. Each sampled training sets keep the data set

balanced. For Uni-gram features, we use all features to do the classification experiments

for each of the 13 training sets. However, for Bi-gram features, the size of the vocabulary

on the full training set can be so huge that even our servers could not handle such a huge

feature set. The average Bi-gram feature set length for a document is averagely 15 times

bigger than Uni-gram feature set, which means 15 times more memory will be consumed to

process the Bi-gram feature set than Uni-gram feature set. Based on our observation, using

Python programming language to deal with the Uni-gram feature set on the full training

set (1,200,000 papers) consumes around 100GB memory, which means the corresponding

Bi-gram feature set will consume 1500GB memory, which is unfeasible. Therefore, for the

Bi-gram all feature set, using all features, we only do classification experiments on the first

10 different training sets that sizes varies from 1,000 to 200,000.

83

www.manaraa.com

6. EVALUATIONS

However, alternatively, if not using all features, only use part of the features to construct

the Bi-gram feature set, the total vocabulary and the memory consumption could be lowered

down. Since in the previous section we proved that χ2 is very efficient to highly rank popular

words and give rare / small words relatively less scores, while PMI can perform even better

if feature size is large enough. Hence, we first use χ2 or PMI to rank all Bi-gram features

and only limit the top k ranked features to include into feature set to do classification. By

using this method, we can still run Bi-gram features on all the 13 different training sets up

to 1,200,000 papers. We use two different k values (k = 500, 000 and k = 50, 000) to test

the differences of classification results. We use these four models (Uni-gram, Bi-gram, Bi-

gram limiting 500,000 features and Bi-gram limiting 50,000 features) to test the impact of

training set size to the classification results. Each model is tested with three different feature

weighting schemes: un-normalized (original CTF), length normalized, fully normalized.

Experiment Results

Fig. 24 shows the thorough comparisons of all the classification results of all models. Panel

(A) shows the comparison of the three different feature weighting schemes for both Uni-

gram and Bi-gram models with unlimited features (k = +∞). All the 6 performance curves

have the increasing trend, similar with arXiv data set, at first the F1 value increasing speed

is faster, when the training set size gain to a large number, the increasing speed drops.

Finally, when reaching the full training set size, the F1 value also reaches the best for all

the models. The three red curves represent the Uni-gram classification results and blue

curves show the Bi-gram results. We can see that with the same training set size, Bi-gram

performs better than Uni-gram at around 1% F1 value. Even at last when training set size

gain to 1,200,000, the best Uni-gram model didn’t out perform the best Bi-gram model at

size 200,000. Take a closer look at the three red Uni-gram curves, we can see that at first

the full normalized model performs the worst, while at full training set size it outperform all

the other two feature weighting models. However, as for Bi-gram, un-normalized Bi-gram

model performs the best among all the three Bi-gram models while full normalized model

performs the worst, which shows a contrary result compared with Uni-gram models.

Fig. 24 (B) shows the three feature weighting models under Bi-gram with limit of

500K features (k = 500, 000), and (C) with limit of 50K features (k = 50, 000). Different

with using all Bi-gram features, both the two plots show that length normalization models

84

www.manaraa.com

6. EVALUATIONS

10
3

10
4

10
5

10
6

Tranining data size

0.65

0.7

0.75

F
1

(A)

unigram
unigram length normalized
unigram full normalized
bigram
bigram length normalized
Bigram full normalized

10
3

10
4

10
5

10
6

Tranining data size

0.73

0.735

0.74

0.745

0.75

0.755

0.76

0.765

F
1

(B)

bigram (PMI)
bigram length normalized (PMI)
Bigram full normalized (PMI)
bigram (CHI)
bigram length normalized (CHI)
Bigram full normalized (CHI)

10
3

10
4

10
5

10
6

Tranining data size

0.73

0.735

0.74

0.745

0.75

0.755

0.76

0.765

F
1

(C)

bigram (PMI)
bigram length normalized (PMI)
Bigram full normalized (PMI)
bigram (CHI)
bigram length normalized (CHI)
Bigram full normalized (CHI)

10
4

10
5

10
6

Tranining data size

0.725

0.73

0.735

0.74

0.745

0.75

0.755

0.76

F
1

(D)

unigram best
bigram best
bigram (PMI) best
bigram (CHI) best

FIGURE 24: Classification Results when increasing training set size. X-axis: training
set size, Y-axis: F1 value. (A) 3 feature weighting schemes under Uni-gram and Bi-
gram (Unlimited features); (B) 3 feature weighting schemes under Bi-gram (limit
500K features); (C) 3 feature weighting schemes under Bi-gram (limit 50K features);
(D) Overall comparison of Uni-gram and Bi-gram

85

www.manaraa.com

6. EVALUATIONS

performs the best, while un-normalized models perform the worst. 500K features model

perform better than 50K features model, however all of them still performs better than

Bi-gram all features models in (A). The interesting phenomenon is that by limiting the

number of features, the length normalization model perform better than full normalization

model, this is because rare words in CiteSeerX data set may not reliable due to the text

cleanness problem, and TF-iDF give more weights to rare words. We can also see from Fig.

24 (B) (C) that χ2 performs more stable than PMI, but overall PMI can reach the best F1

result. Especially for PMI, un-normalized models perform very poor, and the performances

of models with k = 50, 000 drops at last (training size > 400K) due to the feature size is

not large enough to keep the F1 values. At last, (D) shows the comparison between all the

best Uni-gram and Bi-gram models, we can see that Uni-gram first performs much lower

than Bi-gram models, but at last the increasing speed is faster than Bi-gram models. As a

conclusion, we summarize the following points:

• Cut lower ranked Bi-gram features can increase the performance, since CiteSeerX data

set is not as clean as arXiv, there are mal-formed text and lowered ranked features

may contain lots of noisy / mal-formed words.

• After cut lower ranked Bi-gram features, length normalization without TF-iDF sig-

nificantly performs the best. Due to the length variation of CiteSeerX papers, length

normalization may be more powerful applied on CiteSeerX data set.

Impact of Normalization to Precision and Recall

Fig. 25 shows the comparison of Precision, Recall and F1 value curves with the increasing of

training set size and Table 22 shows the statistics of Precision, Recall and F1 value of using

full training set size in detail. (A) plots the Uni-gram models, and we use Full normalized

model to compare since it performs the best, and (B) plots the Bi-gram models and we use

Length normalized model to compare. We can see from both plots that after normalization,

F1 value becomes slightly better, and the gap between precision and recall greatly reduced.

Before normalization, more non-CS papers are classified as CS papers which lowered the

precision value, while most of the CS papers has been classified correctly so that recall value

is high. After normalization, due to the length balance, less non-CS papers are wrongly

classified that pull up the precision value.

86

www.manaraa.com

6. EVALUATIONS

Accuracy Specificity Precision Recall F1

Uni-gram (+∞)

Un-NL 0.6983 0.5097 0.6432 0.8818 0.7436

Len NL 0.7179 0.5837 0.6706 0.8492 0.7493

Full NL 0.7377 0.6481 0.7014 0.8235 0.7572

Bi-gram (+∞)

Un-NL 0.7192 0.5425 0.6613 0.8921 0.7594

Len NL 0.7352 0.6515 0.7006 0.8152 0.7534

Full NL 0.7342 0.6530 0.7007 0.8117 0.7520

Bi-gram (500K PMI)

Un-NL 0.7032 0.5750 0.6617 0.8313 0.7369

Len NL 0.7342 0.6088 0.6872 0.8596 0.7638

Full NL 0.7290 0.5944 0.6804 0.8637 0.7612

Bi-gram (50K CHI)

Un-NL 0.7072 0.5040 0.6473 0.9103 0.7566

Len NL 0.7280 0.5941 0.6798 0.8618 0.7601

Full NL 0.7213 0.5696 0.6698 0.8730 0.7580

TABLE 22: Classification Results Comparison of Uni-gram and Bi-gram with size of
1,200,000 papers (the size of Bi-gram with unlimited features is 200,000)

10
3

10
4

10
5

10
6

10
7

Tranining Set Size

0.65

0.7

0.75

0.8

0.85

M
e
a
s
u
re

(A) Un-NL Precision
Un-NL Recall
Un-NL F1
Full NL Precision
Full NL Recall
Full NL F1

10
3

10
4

10
5

10
6

10
7

Tranining Set Size

0.65

0.7

0.75

0.8

0.85

0.9

M
e
a
s
u
re

(B) Un-NL Precision
Un-NL Recall
Un-NL F1
Len NL Precision
Len NL Recall
Len NL F1

FIGURE 25: Comparison of precison, recall and F1 before and after normalization;
(A) Uni-gram unlimited features; (B) Bi-gram 500K features (Selected by χ2)

87

www.manaraa.com

6. EVALUATIONS

6.4.3 Time Complexity

10
00

20
00

40
00

80
00

10
00

0

20
00

0

40
00

0

80
00

0

10
00

00

20
00

00

40
00

00

80
00

00

12
00

00
0

Tranining Set Size

0

1000

2000

3000

4000

5000

6000

7000

8000
T

im
e
 (

S
e
c
o
n
d
s
)

Uni-Gram(Unlimited Features)
Bi-Gram (500K Features)
Bi-Gram (Unlimited Features)

FIGURE 26: Comparison of time consuming of running Multinomial Naive Bayes

We use 3-fold cross validation to do each of the classification evaluation experiment.

The classifier running time grows very fast with the increasing of the size of training data

set. By using the sparse matrix, the running time complexity can be reduced to O(nlavg)

instead of O(nV), where n is the training set size, lavg is the average number of features in

a document, and V is the size of vocabulary (lavg � V). From Table 22 we can see that

when the training set size grows to 1,200,000, Uni-gram with unlimited features cost 33

minutes to finish a 3-fold cross validation, while Bi-gram with 1 million features limitation

takes 1 hour 42 minutes. Since the whole Bi-gram set contains 337 million features, we

can’t run the Bi-gram with unlimited features with the full set. Retreat back to a smaller

data set that contains 200,000 papers, while Bi-gram with unlimited features takes 1 hour

12 minutes to run a 3-fold cross validation, however, Uni-gram with unlimited features only

takes 4 minutes and Bi-gram with 1 million features only takes 23 minutes. Fig. 26 also

shows the trend of time consumed of running Multinomial Naive Bayes with the increasing

of training set size. The X-axis correspond to the 13 different sampled training sets. 10

correspond to size 200,000, after that Bi-gram with unlimited features is not tested, but the

running time should greatly exceed 8000 seconds if keep increasing the size for this model.

88

www.manaraa.com

6. EVALUATIONS

6.4.4 Impact of feature size

FIGURE 27: Top features selected by different methods. Panel (A) and (C): χ2; (B)
and (D): PMI. (A) and (B) are Uni-gram models; (C) and (D) are Bi-gram models.

After tokenization, stemming and stop words removing, the full CiteSeerX training

data set (1,200,000 papers) contains 24,299,156 Uni-gram features and 337,227,855 Bi-gram

features. We applied two feature selection algorithms (χ2 and PMI) onto the Uni-gram and

Bi-gram features. Fig. 27 shows the distribution of the 3,000 top ranked features among

all the features. The rank is based on the feature selection scores in an descending order.

Compared with arXiv data set, the differences of top ranked features between χ2 and PMI

algorithms can be more clearly seen. Most of the top χ2 ranked features are concentrated

at higher CTF ranges, while still deviated from y = x. Such words are very popular words

that maybe used in many major disciplines. Even so, they still have occurrence differences

between CS and non-CS class. On the other hand, PMI still shows the same result compared

with arXiv data set, it tend to rank very exclusive features to the top, all the top ranked

features under PMI are concentrated surround the axis areas, which means the CTF in

other class is almost 0. We can see that the CTF range of CiteSeerX features are much

larger than arXiv features. In arXiv data set, the CTF of top occurred Uni-gram features

89

www.manaraa.com

6. EVALUATIONS

are within the range of 105, and Bi-gram features within 104. However, as we can see in Fig.

27, top occurred Uni-gram features nearly reach 108 CTF value, while top occurred Bi-gram

features also exceed 106 CTF value. Note that in CiteSeerX, we have used stemming to

process the text, and the feature distribution showed in arXiv data set didn’t apply with

stemming algorithm. Even if stemming is used in CiteSeerX data set, the size of vocabulary

and feature CTF are still much larger than arXiv data set. This also shows that much more

different words are used in the whole paper full text than in abstracts and titles (arXiv data

set). However, we also need to consider the potential mal-formed text in CiteSeerX data

set since the data set cleanness and accuracy is lower than arXiv so that lots of mal-formed

text can form lots of new features.

Analysis of top ranked features by χ2

Table 23 shows the top 70 ranked Uni-gram and Bi-gram features by using χ2 algorithm. All

the features shown are after stemming processing. For the features that have higher CTF

in CS, we bold and use red color to highlight the text to make them more clearly to be seen.

We can see that among the top 70 Uni-gram features, the ratio of CS features and non-CS

features tend to be equal, while ratio of Bi-gram CS features tend to be higher than non-CS

Bi-gram features. The top ranked CS features are indeed very popular words appears in

all categories of papers. For example: ”algorithm” as the first ranked CS features, appears

9 million times in all 600,000 CS papers and 5.1 million times in 600,000 non-CS papers.

Accordingly, all the top ranked features are popular words that both have high CTF and

CDF (class document frequency) in both classes, but the two CTF values still have great

differences (deviated from y = x). In the last section, we showed that the top ranked non-

CS features in arXiv data set are mainly in the categories of Physics and Math. Different

from arXiv data set, we can see from Table 23 that top ranked non-CS features are more

related to non-science and engineering areas (e.g. country, market, water, school, health

care, climate change), even words shouldn’t belong to academic research articles. This may

caused by the crawling problem of CiteSeerX data set, we observed that some of the papers

that labeled as non-CS class are not academic articles, there are all kinds of documents

included, e.g. slides, reports, manuals, instructions, etc.. Hence, lots of words can appear

in non-CS class.

90

www.manaraa.com

6. EVALUATIONS

Uni-gram Bi-gram

Name CTF in

CS

CTF in

non-CS

CDF in

CS

CDF in

non-CS

Name CTF in

CS

CTF in

non-CS

CDF in

CS

CDF in

non-CS

algorithm 9094260 5120571 444082 277696 comput scienc 1043131 604085 328879 162906

comput 10761115 7984629 572006 460679 unit state 76886 697975 26070 94561

node 6317054 3754342 230732 139734 intern confer 610577 347959 210417 117368

queri 3476848 1549513 144713 82773 polynomi time 260751 75995 48536 15944

graph 3752044 2011206 241260 154355 lower bound 433741 219407 85053 51332

year 722689 4822896 192839 286256 run time 486805 278407 112860 58126

set 11521264 10814739 562450 519026 logic program 287874 107359 31336 13738

countri 198580 2429368 32683 112131 springer verlag 435485 256937 169434 108063

health 244015 2576215 31924 100276 ieee transact 352799 182596 129614 66797

market 505263 3236997 62280 137859 upper bound 376180 214822 103592 60997

edg 2666065 1574932 182389 141160 interest rate 15024 285959 2855 23943

tree 3172221 2078762 201431 134222 relat work 284483 138690 167827 66825

econom 312848 2626677 64176 152262 vol pp 634408 494969 120212 89890

water 253606 2411417 32013 96186 acm transact 187461 61345 64989 28405

let 4554051 3670377 361142 277586 per cent 16224 273292 2571 15722

ieee 2316380 1330554 377645 201088 delta delta 722427 606267 30721 24508

govern 297315 2451278 79073 165046 ieee tran 289045 154412 92532 48264

acm 1603841 708818 316417 133191 artifici intellig 308956 174703 98880 53463

bound 2846704 1938533 287175 223065 worst case 274909 146195 84054 45030

educ 439476 2718445 67795 133029 exchang rate 9336 221697 1908 16796

proof 3118084 2271453 221100 161838 nostringv nostringv 478565 358206 187 164

network 5901436 5464640 302688 254255 data structur 406475 282105 98567 60369

nation 513496 2814287 179298 242420 long term 122326 533232 48444 108603

problem 6739211 6625710 518606 463929 sensor network 197667 85992 18867 8495

optim 3433226 2734436 340720 265975 execut time 256689 142403 55071 28824

path 2872938 2122258 228699 193819 develop countri 15487 222811 3155 27254

percent 203265 1781019 45697 103547 climat chang 10078 203941 1476 13323

chapter 675094 3044936 74237 131440 machin learn 238877 127428 65165 31524

school 337192 2155961 112936 161635 depart comput 220985 111962 142549 64553

risk 411550 2332124 68195 144514 experiment result 238555 130923 110274 53345

semant 2041385 1324548 178485 102372 health care 33261 269695 7327 27925

proc 1529203 829372 257986 164441 model check 172883 73588 22163 9869

constraint 2806391 2139714 271022 224386 program languag 331271 223460 87785 54624

report 1743627 5338885 376946 382146 log log 234130 130715 36046 25632

proceed 2317200 1672717 393273 308621 proc ieee 175522 78580 71915 32010

industri 408616 2217651 109427 173154 proc acm 124566 39348 49994 16347

sector 142567 1441750 20750 82986 real time 626305 560779 116383 96248

firm 176256 1535412 18428 69968 comput vision 186945 90966 46571 22918

age 254241 1763229 55347 125959 proceed intern 225439 126717 101470 56138

fund 188599 1543674 80679 134906 note comput 224998 127694 83501 36461

logic 2402476 1808226 209195 172986 futur work 271632 174457 161496 85986

financi 158593 1438733 41819 112859 ieee comput 185408 92491 94185 42247

imag 3812753 3446310 182869 182480 world bank 6804 164618 1219 18649

time 11389566 13205693 541248 527490 page springer 137411 52841 50500 20645

denot 2187391 1624808 332253 240339 acm press 155509 68699 61786 25729

bank 268931 1708424 43571 93597 shortest path 163616 76481 29077 14121

lemma 2011014 1444799 124355 77458 section present 232154 141492 146898 85101

perform 6375121 6674183 492557 439485 public health 13934 181430 3140 25567

price 596383 2541327 70560 124921 data mine 193814 105635 39690 20706

student 778193 2975985 74801 112092 ad hoc 273620 185981 61587 49516

public 1053752 3606894 190533 262306 time algorithm 114236 40348 45881 16892

approach 4648731 4518732 505074 443954 cross section 39126 248333 11648 48415

product 1748469 5096109 263431 333420 approxim algorithm 106433 34981 22722 8297

growth 234214 1585085 64333 140281 proceed acm 138574 60718 63949 26878

tax 64890 1045270 10303 49612 figur show 720660 709154 230072 183258

fig 2626714 2153889 222303 155208 lectur note 273481 191896 101770 61186

cluster 2064673 1540745 134136 114003 work paper 33054 227066 19923 54864

shall 385936 1951996 87851 110921 softwar engin 259765 178127 64774 38686

capit 113127 1177587 29315 88122 land use 13128 165124 1905 16385

invest 147319 1281139 33643 98447 per capita 5233 135826 1150 18394

search 2513654 2049858 269084 218926 privat sector 9106 149555 2495 26029

base 7718279 8522483 558590 524728 algorithm use 232655 152704 124815 73055

assess 499842 2229179 116637 196081 databas system 148638 73278 38150 19412

environment 167309 1329008 40507 99046 public key 199293 121194 21106 11968

theorem 2656552 2236051 194712 133941 monetari polici 4191 128448 412 9805

random 2110140 1629056 242804 205268 int conf 126470 54959 48432 22190

agenc 139626 1216703 41540 102120 np hard 101940 35260 32057 11297

model 11311364 13428799 496710 458774 hash function 114478 45406 17952 7774

protocol 2310378 1865816 147846 124408 object orient 322480 251511 61772 43683

rule 3589617 3370316 260525 256981 technic report 338169 269133 167957 105247

TABLE 23: Top 70 Uni-gram and Bi-gram CiteSeerX Features Selected by χ2 (fea-
tures with higher CTF in CS are highlighted with red color)

91

www.manaraa.com

6. EVALUATIONS

Uni-gram Bi-gram

Name CTF in

CS

CTF in

non-CS

CDF in

CS

CDF in

non-CS

Name CTF in

CS

CTF in

non-CS

CDF in

CS

CDF in

non-CS

tikzpictur 0 34282 0 28 clin timeout 0 21740 0 2

pgfpoint 0 8524 0 20 datamonitor plc 1 33820 1 15

moferror 0 7884 0 7 end tikzpictur 0 16585 0 27

zibeta 3071 0 1 0 begin tikzpictur 0 16564 0 27

xmmreg 0 7123 0 21 omlp mutex 6545 0 3 0

smjmap 0 7115 0 8 mpcp suspens 6530 0 3 0

jmapaq 0 7113 0 5 mpcp virtual 6529 0 2 0

sjnaam 0 7082 0 8 base omlp 6525 0 1 0

laapaw 0 6558 0 9 spin mpcp 6525 0 1 0

xscf 0 5503 0 21 hdb tiff 0 14026 0 9

osfxsr 0 5400 0 49 senso stretto 0 13155 0 16

pgfsi 0 5396 0 19 analysi datamonitor 0 12329 0 6

siread 0 5133 0 19 sptheo timeout 0 11878 0 2

naesb 5 30296 3 108 reflect moferror 0 7675 0 7

ecorefer 0 4993 0 21 campu camperdown 0 7452 0 4

springerni 3 19176 3 52 na gnd 2965 0 5 0

svori 0 4408 0 13 milano lombardia 0 7053 0 1

sjcodc 0 4338 0 5 function preq 2852 0 1 0

pgfkey 0 4209 0 22 submiss fv 0 6941 0 1

adobeconv 1671 0 1 0 bargain id 0 6766 0 35

pgfusepath 0 4071 0 20 cate vac 0 6765 0 34

emisfact 0 3782 0 2 affirm empl 0 6764 0 33

mwarray 0 3507 0 6 gori acrl 0 6764 0 33

drawingml 0 3362 0 7 sandburg carl 0 6678 0 9

pgfpictur 0 3316 0 24 wsdot bridg 0 6467 0 49

sortedcontinu 0 3177 0 1 tlr level 0 6419 0 36

tcscdi 0 3153 0 17 brass grundlagen 2607 0 24 0

iteratei 1252 0 6 0 smjmap issn 0 6286 0 7

infochunk 1230 0 4 0 iac ir 0 6218 0 4

nzerdc 0 2964 0 3 ust tia 0 6180 0 10

smjcat 0 2935 0 7 datenbanken ii 2518 0 23 0

sacpa 0 2863 0 14 tangut ideograph 0 6079 0 1

pgfmathresult 0 2861 0 19 plc avail 4 30315 3 36

eurosistema 0 2771 0 35 camperdown darlington 1 11720 1 28

reliabilityfirst 0 2710 0 80 jmapaq issn 0 5831 0 5

objectlinklist 0 2664 0 2 edf fm 2358 0 13 0

sjmael 0 2519 0 6 coden smjmap 0 5640 0 6

usetikzlibrari 0 2480 0 25 icap mg 0 5619 0 7

twpe 0 2477 0 13 coden jmapaq 0 5489 0 5

dbenviron 0 2465 0 8 sjnaam issn 0 5476 0 8

myisamchk 0 2437 0 21 fv june 0 5407 0 1

sdchmm 995 0 9 0 review lra 0 5394 0 29

batchact 988 0 3 0 laapaw issn 0 5307 0 8

klmirqd 986 0 2 0 darlington mode 1 10475 1 3

mexcpt 0 2406 0 16 evx sp 0 5205 0 4

osxm 0 2406 0 16 np idl 8255 3 7 3

orderedcontinu 0 2403 0 1 chamber thursday 0 4986 0 69

pgfpathlineto 0 2358 0 20 uniformli wss 2019 0 3 0

feederindex 0 2346 0 1 coden sjnaam 0 4848 0 8

vnsnap 954 0 7 0 tel coop 0 4848 0 9

sdsrv 0 2328 0 34 springerni com 3 19175 3 51

hrungsgebiet 0 2261 0 11 link springerni 3 19171 3 48

itdseo 0 2239 0 14 spd server 0 4791 0 19

colhdg 0 2238 0 33 arria ii 0 4700 0 36

pjmsettlement 0 2232 0 7 emilia romagn 0 4606 0 2

timequest 1 4445 1 42 juli altera 0 4565 0 22

ldapux 0 2190 0 13 may qnx 0 4544 0 4

algoej 0 2173 0 9 oracl clusterwar 1 8845 1 76

cmisexampl 0 2162 0 5 cumb sem 0 4421 0 1

jacoah 0 2140 0 23 cr prereq 0 4398 0 6

ellrd 0 2122 0 3 pp gpo 0 4389 0 12

tangut 2 6318 2 16 journal hdb 2 13042 2 13

osxmmexcpt 0 2103 0 50 nof api 0 4343 0 8

nccsdo 0 2088 0 23 coden laapaw 0 4273 0 9

rmajett 0 2039 0 7 chapter nof 0 4263 0 5

txlisp 0 2022 0 1 discount nottest 0 4242 0 1

apstag 0 2017 0 5 nottest unit 0 4232 0 1

jpdcer 0 2016 0 17 adv hon 0 4146 0 7

lgia 1 3968 1 31 statu bsi 0 4112 0 43

ombalt 0 1963 0 1 jx rpc 1678 0 3 0

TABLE 24: Top 70 Uni-gram and Bi-gram CiteSeerX Features Selected by PMI
(features with higher CTF in CS are highlighted with red color)

92

www.manaraa.com

6. EVALUATIONS

Analysis of top ranked features by PMI

Now let’s turn to the top 70 selected Uni-gram and Bi-gram features by PMI algorithm.

Very different from χ2 algorithm, PMI ranked very exclusive unpopular words into the top

position. As shown in Table 24, most of the top ranked PMI selected features are even mal-

formed words due to the PDF parsing problem. And most of the features have very low

CDF (class document frequency) which shows that these features only centralized in very

few document. For example: the 3rd ranked feature ”moferror”, only appear in 7 non-CS

documents but in total have 3,071 occurrences. It is highly possible that the 7 documents

have PDF parsing problem or the documents not belong to academic articles, maybe they

are just some web pages or even source codes.

Moreover, there are much more non-CS features than CS features that ranked as top

features. This phenomenon illustrates that non-CS documents have more features exclu-

sively and highly occurred. This is reasonable since non-CS class can include any kinds of

documents. As a contrary, our CS class is obtained from DBLP data set which only focus

on published CS articles so that the exclusively word concentration is not as large as those

non-CS documents.

Another observation to the top PMI ranked feature list is that CS features with lower

CTF can be ranked into a similar position with a non-CS feature that have higher CTF

value. For example: ”moferror” has CTF value 7,884 in non-CS class and ranked as 3rd,

while ”zibeta” has CTF value 3,071 in CS class and ranked as 4th. This is because the total

document length in non-CS is larger than total length in CS. Considering the equation

to calculate the PMI score, it is calculated by

∣∣∣∣log2
NN11

N1.N.1

∣∣∣∣ +

∣∣∣∣log2
NN10

N1.N.0

∣∣∣∣, where N1i

represents the feature’s CTF in class i, N.i represents the total document length in class

i, and N1. represents the total occurrences of the feature in all documents among both

classes. Because N.CS < N.nonCS , which means total document length of CS is smaller

than non-CS, thus higher N1nonCS ranked into a similar positive with lower N1CS . Actually

if we use length normalized feature weight to calculate the feature selection scores, the

unbalanced phenomenon will become more severe since all CS features will be ranked to a

lower position.

As a conclusion, we can see that PMI feature selection algorithm is not so reliable to

apply to CiteSeerX data set, the top ranked exclusive features can contain lots of mal-

93

www.manaraa.com

6. EVALUATIONS

formed words. Much larger feature size need to be used in order to ensure the classification

accuracy. However, we will still examine the performance of PMI algorithm at CiteSeerX

data set to find out if PMI can still outperform χ2 if the amount of features used is large

enough.

Uni-gram Experiment Results

10
2

10
4

10
6

10
8

Feature size

0.2

0.3

0.4

0.5

0.6

0.7

F
1

(A) unigram

CHI Square
PMI

10
6

10
7

Feature size

0.7

0.71

0.72

0.73

0.74

F
1

Closeup of (A)

CHI Square
PMI

10
2

10
4

10
6

10
8

Feature size

0.2

0.3

0.4

0.5

0.6

0.7

F
1

(B) unigram length normalized

CHI Square
PMI

10
5

10
6

10
7

Feature size

0.742

0.743

0.744

0.745

0.746

0.747

0.748

F
1

Closeup of B

CHI Square
PMI

10
2

10
4

10
6

10
8

Feature size

0.2

0.3

0.4

0.5

0.6

0.7

F
1

(C) unigram fully normalized

CHI Square
PMI

10
5

10
6

10
7

Feature size

0.75

0.752

0.754

0.756

F
1

Closeup of C

CHI Square
PMI

FIGURE 28: Impact of feature size for Uni-gram model, with combination of text
normalization. (A) Uni-gram un-normalized; (B) Uni-gram length normalized; (C)
Uni-gram fully normalized

Fig. 28 shows the classification results of Uni-gram model when using the three different

feature weighting schemes. Each plot shows the comparison of χ2 and PMI algorithms under

the same feature weighting scheme. Similar with the results we obtained from arXiv data

set, using un-normalized feature, when the number of selected features is large enough, PMI

performs even better than using all features (Fig. 28 (A)). Under un-normalized feature

model, the highest F1 measure value reached by PMI is 0.7477 when using around 4.4 million

Uni-gram features, compared with using all features, the F1 result is only 0.7436 (see from

Table 22). However, the same as arXiv data set, after feature weight normalization, PMI

can no longer perform better than using all features, but normalized feature weight can let

PMI increases faster, with feature size larger than 104, PMI can surpass χ2 for both length

normalization and full normalization environment. Moreover, if too few features are used,

94

www.manaraa.com

6. EVALUATIONS

PMI performs very poor, F1 measure value even lower than 0.2. The reason is because the

unreliable exclusive words appear in the parsed full text. From Table 24 we can see that

the top ranked features are more likely to be mal-formed words. Another reason is the

much longer document length compared with arXiv data set, more PMI selected features

need to be included in order to give the classifier sufficient information to correctly classify

documents.

As for the comparison of three feature weighting models, un-normalized feature weight

perform the worst, while full normalized feature weight perform the best, even at feature size

50,000 under χ2 algorithm, the classification F1 value has already surpass un-normalized

feature weight model with full feature size. From all the three plots in Fig. 28 we can see

that χ2 has very stable performance. For un-normalized models, it only fluctuate from 0.72

to 0.743. However, fully normalized model is not as stable as un-normalized model, at first

(smallest feature size) it performs the worst, but with the increase of feature size, it quickly

surpass all the other two feature weighting models.

Bi-gram Experiment Results

10
2

10
4

10
6

10
8

Feature size

0.2

0.3

0.4

0.5

0.6

0.7

F
1

(A) bigram

CHI Square
PMI

10
6

10
7

10
8

Feature size

0.74

0.745

0.75

0.755

0.76

F
1

Closeup of (A)

CHI Square
PMI

10
2

10
4

10
6

10
8

Feature size

0.2

0.3

0.4

0.5

0.6

0.7

F
1

(B) bigram length normalized

CHI Square
PMI

10
4

10
6

10
8

Feature size

0.73

0.735

0.74

0.745

0.75

0.755

F
1

Closeup of B

CHI Square
PMI

10
2

10
4

10
6

10
8

Feature size

0.3

0.4

0.5

0.6

0.7

F
1

(C) bigram fully normalized

CHI Square
PMI

10
4

10
6

10
8

Feature size

0.735

0.74

0.745

0.75

0.755

F
1

Closeup of C

CHI Square
PMI

FIGURE 29: Impact of feature size for Bi-gram model, with combination of text
normalization. (A) Bi-gram un-normalized; (B) Bi-gram length normalized; (C) Bi-
gram fully normalized

Fig. 29 shows the comparisons of classification results of Uni-gram model when using the

95

www.manaraa.com

6. EVALUATIONS

three different feature weighting schemes. The size of the training set of this experiment is

200,000. Note that Uni-gram feature size experiment we use the full training size: 1,200,000

papers. 29 (A) shows the comparison of χ2 and PMI under un-normalized model. The same

as arXiv data set and Uni-gram CiteSeerX data set, F1 for χ2 keep increasing with the

increase of feature size, while using all features (around 60 million) the F1 results reaches

the highest value 0.7594. However, PMI reach its best F1 value when only use 6.5 million

top ranked features, the F1 is 0.7621 even higher than using all features. Also, at first PMI

perform very poor, while the number of features is larger than 106, it start to perform better

than χ2.

In 29 (B) (C), we can see that the Bi-gram shows a different trend of the changes of F1

values. In both normalized models, when using more than 50,000 features, the classification

F1 value start to drop, which shows the over fitting phenomenon. Although at last when

using all features, both length normalization model and full normalization cannot out per-

form un-normalized model, but when using around 50,000 features, the F1 values are much

higher than using all features, which can compete with un-normalized model. Note that 1.

normalized model can reduce the gap between precision and recall which indicates a better

classification result even though the F1 values are similar; 2. normalized model reaches 0.76

F1 (by using PMI) with only 50,000 features for which time and space cost for train the

classifier is much smaller than using all features. Based on the above two aspects, it can be

concluded that normalized models are better than un-normalized model.

Moreover, when the number of features exceeds 104, PMI start to perform better than

χ2, which illustrates that normalized model can let PMI have better performance using less

features than un-normalized model. Among the two normalized Bi-gram models, the over

fitting problem exists. This can illustrated that low text accuracy and data set cleanness

problem in CiteSeerX data set can cause Bi-gram model produce much more noisy features

(constructed by mal-formed words). Thus we can see that both the two feature selection

algorithm performance drops when feature size is too large. It is surprising that PMI can

reach the best perform and greatly surpass χ2 by only using top 50,000 (0.1%) features. As

for the comparison between two normalized models, length normalization model perform

slightly better than full normalization model, this is because that rare words (especially

Bi-gram) is highly possible to be mal-formed words, full normalization that using TF-iDF

give such rare words more weights that may lower the classification results.

96

www.manaraa.com

6. EVALUATIONS

6.4.5 Observation to the Naive Bayes Classification Result

(a)

-1000 -950 -900 -850 -800 -750 -700

Probability Level in CS

-1000

-950

-900

-850

-800

-750

-700

P
ro

b
a

b
ili

ty
 L

e
v
e

l
in

 n
o

n
-C

S

Correctly Classified
Wrongly Classified

(b)

-10 -9.8 -9.6 -9.4 -9.2 -9 -8.8 -8.6 -8.4 -8.2 -8

Probability Level in CS ×10
5

-10

-9.8

-9.6

-9.4

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

P
ro

b
a
b
ili

ty
 L

e
v
e
l
in

 n
o
n
-C

S

×10
5

Correctly Classified
Wrongly Classified

(c)

FIGURE 30: Naive Bayes Classification Probability Distributions: Uni-gram (a) and
closer look on smaller values(b) and bigger values (c)

Fig. 30 shows the Multinomial Naive Bayes classification probability distributions. Each

node represent a paper, the X-axis is the probability score of class CS and the Y-axis is

the probability score of class non-CS. If a node locate in the southeast side of y = x, it

will be classified as CS, otherwise non-CS. Blue nodes in the plot represent the correctly

classified papers, and red nodes represent the wrongly classified papers. Compared with

arXiv classification result shown in Fig. 22, the conclusion remains the same: wrongly

classified papers are more centralized around y = x, which means they have more similar

probability scores between the two classes. However, compare with arXiv data set in Fig.

22 again, we can see from Fig. 30 (a) that all the nodes are more attached to y = x, and

the probability value range is much larger than arXiv range. This is mainly because every

document in CiteSeerX data set contains the whole paper text, the length is much longer

than abstract and titles included in arXiv data set, adding the probability of all the words

appear in whole paper text cause the much larger probability range.Because the range is

large and due to the scaling of the plot, the nodes look more attached to y = x. If we take

a closer look at Fig. 30 (b) (c), we can see that nodes are still deviated from y = x and

correctly classified papers tend to be more deviated. Fig. 30 (b) shows the closer look at

smaller probability values, we can see that there are more CS papers appeared than non-CS

papers; Fig. 30 (c) shows the larger probability value ranges, more non-CS papers appear.

This phenomenon further illustrates that more non-CS papers have long document length

than CS papers.

Moreover, from Table 25 we can see that top mis-classified non-CS papers are highly

97

www.manaraa.com

6. EVALUATIONS

Paper Title

1 Static RAM with Multiple Sensing Schemes For Mentor 1997 Student VLSI Design Contest In Digital Design Category and Novice Class

2 Document for the Real-Time Message Passing Interface

3 Handbook of Constraint Programming

4 Handbook of Applied Cryptography

5 Interim Reports on work of the International Institute for Applied Systems Analysis

6 PPFS: A High Performance Portable Parallel File System

7 Lecture Notes in Computer Science 3503 Commenced Publication in 1973

8 Final report of European project: number IST-1999-12324

9 Advanced Topics in Computer Systems CS262

10 Space-time coding techniques with bit-interleaved coded modulations

11 Concepts, Techniques, and Models of Computer Programming

12 Fundamentals of Computer Design

13 Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles

14 Planning Algorithms

15 On Protocol Security in the Cryptographic Model

TABLE 25: Example of top mis-classified non-CS papers

similar with CS papers. Actually lots of them are not academic papers, those non-CS

instances include report, review, books, even CS course materials. Due to the labeling

problem, part of the labeled non-CS papers can actually be CS papers. We treat intersection

of CiteSeerX and DBLP to be the CS papers. However, DBLP only includes CS papers

published on high quality CS publications, it is possible that some other CS papers in

CiteSeerX data set haven’t been included in the interestion set. This is the reason why

more labeled non-CS papers were mis-classified than labeled CS papers (False Positive

higher than False Negative which cause the precision lower than recall). Refer to arXiv

data set, for which labels have already been provided, such problems don’t exist. Precision

and recall are both in similar high values.

98

www.manaraa.com

CHAPTER 7

Discussions and Conclusions

In this thesis, we used big scholarly data set with size more than millions documents to

answer the question whether Computer Science academic papers can be classified out from

papers in all the other research fields. Two data sets are used: CiteSeerX and arXiv. We use

DBLP data set to merge with CiteSeerX in order to label CiteSeerX set into CS and non-CS.

Based on the difficulties of classifying academic papers, we implemented a comprehensive

classification system to conduct lots of experiments for comparison and evaluation:

1. train and test classifier with two algorithms: Naive Bayes (Bernoulli, Multinomial),

Logistic Regression.

2. train classifiers with lots of different sizes of training sets, from 1,000 docs up to

millions of docs.

3. use three models: Uni-gram, Bi-gram, sentence2vec.

4. use three feature selection algorithms to lower down feature dimensionality: χ2, PMI,

MI.

5. Use two feature weight normalization schemes to deal with length variations: length

normalization and full normalization (Len Normalization + TF-iDF).

6. experiment the impact of stop words and stemming to the classification results.

When experimenting with arXiv data set, we find that most classification methods can

reach an F1 value as high as 0.9. The best method is Multinomial Naive Bayes on Bi-

gram language model, which obtained an F1 value close to 0.95. However, on sentence2vec

representation, neither logistic regression nor Naive Bayes can compete with Bi-gram model.

Other classification methods, including SVM, are also tested on smaller data sets because

99

www.manaraa.com

7. DISCUSSIONS AND CONCLUSIONS

of the scalability issue of these algorithms. SVM performs similar with Logistic Regression

on sentence2vec representation. For multinomial Naive Bayes text classification, it was long

believed that PMI is not a good candidate for feature selection. On the contrary to this

believe, we show that PMI is better than χ2 and MI. This is probably because of the size of

our training data is bigger– in Fig. 21 we can see that PMI is inferior until the feature size

exceeds 104. We also shows that stop word removing improves the performance for all the

methods, including bag of words model, Bi-gram model, and various classification methods

on distributional vector representation of documents. On the other hand, stemming has

limited impact on the performance. As for feature weight normalization, full normalization

improve the classification accuracy a little bit compared with other schemes, but overall,

feature weight normalization can’t bring too much improvement, this is because the lengths

of abstract + title are very similar (can be seen from Fig. 16).

However, classification results on CiteSeerX data set are not as good as arXiv data set,

the best F1 value we obtained is around 0.76 when using Bi-gram with reduced normalized

features. This is partly because of the data set labeling problem and the data set text

cleanness problem. Firstly, for the labeling problem, papers not within CiteSeerX and

DBLP interestion may still be CS papers. In Table 25 we also show that based on the MNB

classification results of labeled non-CS papers, those papers which CS probability highly

exceed non-CS probability could actually be CS papers. Thus, it explains the phenomenon

that more labeled non-CS papers have been classified as CS papers that lower the precision

value. However, we surprised to find out that by using feature weight normalization process,

the gap between precision and recall can be lower down and the F1 also improved. Secondly,

for the text cleanness problem, we can see from Table 24 that data set contains lots of mal-

formed words due to the PDF parsing problem, which also caused the incredibly high feature

dimensionality, especially for Bi-gram (more than 330 million features). Thus, under Bi-

gram model, in Fig. 24 (A) we can see that using all features the Bi-gram classification

results are not the best, and feature normalization cannot improve the results too. But if we

select the top k ranked Bi-gram features, the F1 can be improved and length normalization

can even further boost the F1 value higher (Fig. 24 (B) (C)). The phenomenon of length

normalization performs better than full normalization also infer that TF-iDF weighting

may not appropriate for CiteSeerX data set since rare words can be mal-formed words that

confused the classifier. If rare words are given too much weights, the classification results

100

www.manaraa.com

7. DISCUSSIONS AND CONCLUSIONS

could be affected.

In addition, we also tried to classify papers in narrow areas, such as papers in confer-

ences VLDB, SIGMOD, and ICSE, each class trained on two thousand of papers. We also

observed high accuracy in these experiments. Among VLDB and ICSE, the F1 is above

0.98 because these two conferences focus on very different topics, one in database, the other

in software engineering. What is surprising is that among VLDB and SIGMOD, which are

both database conferences, the F1 value is also above 0.88.

Compared with most of the previous works, it is surprising to see that Computer Science

academic papers can be classified with high accuracy (nearly 95%) based on content only.

With such high accuracy, we can envision numerous applications in the pipeline. We are

building an academic search engine in the area of computer science. When crawling the data

from the Web and online social networks, we can judge whether a document is a computer

science paper; when conducting author disambiguation, we can determine whether a paper

is written by a certain person or a group of researchers or a community of academics; when

recommending papers, we can classify the paper according to a researcher’s profile.

101

www.manaraa.com

REFERENCES

[1] Aggarwal, C. C. and Zhai, C. (2012). A survey of text classification algorithms. In

Mining text data, pages 163–222. Springer.

[2] Bird, S. (2006). Nltk: the natural language toolkit. In Proceedings of the COLING/ACL

on Interactive presentation sessions, pages 69–72. Association for Computational Linguis-

tics.

[3] Caragea, C., Silvescu, A., Kataria, S., Caragea, D., and Mitra, P. (2011). Classify-

ing scientific publications using abstract features. American Association for Artificial

Intelligence.

[4] Caragea, C., Wu, J., Ciobanu, A., Williams, K., Fernández-Ramı́rez, J., Chen, H.-H.,

Wu, Z., and Giles, L. (2014a). Citeseer x: A scholarly big dataset. In Advances in

Information Retrieval, pages 311–322. Springer.

[5] Caragea, C., Wu, J., Williams, K., Gollapalli, S. D., Khabsa, M., Teregowda, P., and

Giles, C. L. (2014b). Automatic identification of research articles from crawled docu-

ments. In WSDM 2014 Workshop on Web-scale Classification: Classifying Big Data

from the Web.

[6] Cavnar, W. B., Trenkle, J. M., et al. (1994). N-gram-based text categorization. Ann

Arbor MI, 48113(2):161–175.

[7] Craven, M., Kumlien, J., et al. (1999). Constructing biological knowledge bases by

extracting information from text sources. In ISMB, volume 1999, pages 77–86.

[8] Django (2013). Django software foundation. In V1.5. Lawrence, Kansas.

102

www.manaraa.com

REFERENCES

[9] Domingos, P. and Pazzani, M. (1997). On the optimality of the simple bayesian classifier

under zero-one loss. Machine learning, 29(2-3):103–130.

[10] Giles, C. L., Bollacker, K. D., and Lawrence, S. (1998). Citeseer: An automatic citation

indexing system. In Proceedings of the third ACM conference on Digital libraries, pages

89–98. ACM.

[11] Hatcher, E., Gospodnetic, O., and McCandless, M. (2004). Lucene in action.

[12] Hosmer, D. W., Jovanovic, B., and Lemeshow, S. (1989). Best subsets logistic regres-

sion. Biometrics, pages 1265–1270.

[13] Joachims, T. (1998). Text categorization with support vector machines: Learning with

many relevant features. Springer.

[14] Kodakateri Pudhiyaveetil, A., Gauch, S., Luong, H., and Eno, J. (2009). Concep-

tual recommender system for citeseerx. In Proceedings of the third ACM conference on

Recommender systems, pages 241–244. ACM.

[15] Lawrence, S., Giles, L. C., and Bollacker, K. (1999). Digital libraries and autonomous

citation indexing. Computer, 32(6):67–71.

[16] Le, Q. V. and Mikolov, T. (2014). Distributed representations of sentences and docu-

ments. arXiv preprint arXiv:1405.4053.

[17] Ley, M. (2009). Dblp: some lessons learned. Proceedings of the VLDB Endowment,

2(2):1493–1500.

[18] Li, H., Councill, I. G., Bolelli, L., Zhou, D., Song, Y., Lee, W.-C., Sivasubramaniam,

A., and Giles, C. L. (2006). Citeseer χ: a scalable autonomous scientific digital library. In

Proceedings of the 1st international conference on Scalable information systems, page 18.

ACM.

[19] Lu, Q. and Getoor, L. (2003). Link-based classification. In ICML, volume 3, pages

496–503.

[20] Manning, C. D., Raghavan, P., Schütze, H., et al. (2008). Introduction to information

retrieval, volume 1. Cambridge university press Cambridge.

103

www.manaraa.com

REFERENCES

[21] McCallum, A., Nigam, K., et al. (1998). A comparison of event models for naive bayes

text classification. In AAAI-98 workshop on learning for text categorization, volume 752,

pages 41–48. Citeseer.

[22] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

[23] Orduña-Malea, E., Ayllón, J. M., Mart́ın-Mart́ın, A., and López-Cózar, E. D. (2014).

About the size of google scholar: playing the numbers. arXiv preprint arXiv:1407.6239.

[24] Ororbia II, A. G., Wu, J., Khabsa, M., WIlliams, K., and Giles, C. L. (2015). Big schol-

arly data in citeseerx: Information extraction from the web. In Proceedings of the 24th

International Conference on World Wide Web Companion, pages 597–602. International

World Wide Web Conferences Steering Committee.

[25] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-

del, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine

learning in python. The Journal of Machine Learning Research, 12:2825–2830.

[26] Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3):130–137.

[27] Rennie, J. D., Shih, L., Teevan, J., Karger, D. R., et al. (2003). Tackling the poor as-

sumptions of naive bayes text classifiers. In ICML, volume 3, pages 616–623. Washington

DC).

[28] Rogati, M. and Yang, Y. (2002). High-performing feature selection for text classi-

fication. In Proceedings of the eleventh international conference on Information and

knowledge management, pages 659–661. ACM.

[29] Sinha, A., Shen, Z., Song, Y., Ma, H., Eide, D., Hsu, B.-j. P., and Wang, K. (2015). An

overview of microsoft academic service (mas) and applications. In Proceedings of the 24th

International Conference on World Wide Web Companion, pages 243–246. International

World Wide Web Conferences Steering Committee.

[30] Tang, B., Kay, S., and He, H. (2016). Toward optimal feature selection in naive bayes

for text categorization. arXiv preprint arXiv:1602.02850.

104

www.manaraa.com

REFERENCES

[31] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., and Su, Z. (2008). Arnetminer: extrac-

tion and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 990–998. ACM.

[32] Warner, S. (2005). The arxiv: Fourteen years of open access scientific communication.

In Free Culture and the Digital Library Symposium Proceedings 2005, page 56.

[33] Wu, J., Williams, K., Chen, H.-H., Khabsa, M., Caragea, C., Ororbia, A., Jordan,

D., and Giles, C. L. (2014). Citeseerx: Ai in a digital library search engine. In The

Twenty-Sixth Annual Conference on Innovative Applications of Artificial Intelligence,

IAAI, volume 14.

[34] Xu, Y., Jones, G. J., Li, J., Wang, B., and Sun, C. (2007). A study on mutual

information-based feature selection for text categorization. Journal of Computational

Information Systems, 3(3):1007–1012.

[35] Yang, Y. and Chute, C. G. (1994). An example-based mapping method for text cate-

gorization and retrieval. ACM Transactions on Information Systems (TOIS), 12(3):252–

277.

[36] Yang, Y. and Liu, X. (1999). A re-examination of text categorization methods. In

Proceedings of the 22nd annual international ACM SIGIR conference on Research and

development in information retrieval, pages 42–49. ACM.

[37] Yang, Y. and Pedersen, J. O. (1997). A comparative study on feature selection in text

categorization. In ICML, volume 97, pages 412–420.

105

www.manaraa.com

VITA AUCTORIS

NAME: Tong Zhou
PLACE OF BIRTH: Zhengzhou, Henan province, China
YEAR OF BIRTH: 1990
EDUCATION: Beijing University of Posts and Telecommunications,

B.Eng., Computer Science and Technology, Beijing,
China, 2011

Beijing University of Posts and Telecommunications,
M.Sc., Computer Science and Technology, Beijing,
China, 2014

University of Windsor, M.Sc in Computer Science,
Windsor, Ontario, 2016

106

